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Abstract

We extend the theory of tent spaces from Euclidean spaces to various types of
metric measure spaces. For doubling spaces we show that the usual ‘global’
theory remains valid, and for ‘non-uniformly locally doubling’ spaces (including
Rn with the Gaussian measure) we establish a satisfactory local theory. In the
doubling context we show that Hardy–Littlewood–Sobolev-type embeddings hold
in the scale of weighted tent spaces, and in the special case of unbounded AD-
regular metric measure spaces we identify the real interpolants (the ‘Z-spaces’)
of weighted tent spaces.

Weighted tent spaces and Z-spaces on Rn are used to construct Hardy–Sobolev
and Besov spaces adapted to perturbed Dirac operators. These spaces play a key
role in the classification of solutions to first-order Cauchy–Riemann systems (or
equivalently, the classification of conormal gradients of solutions to second-order
elliptic systems) within weighted tent spaces and Z-spaces. We establish this clas-
sification, and as a corollary we obtain a useful characterisation of well-posedness
of Regularity and Neumann problems for second-order complex-coefficient ellip-
tic systems with boundary data in Hardy–Sobolev and Besov spaces of order
s ∈ (−1, 0).
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Introduction

This thesis consists of two main parts. In the first part we provide various gen-
eralisations and extensions of the theory of tent spaces. In the second part we
establish results concerning the well-posedness of certain elliptic boundary value
problems, using some of our extended tent space theory in the process.

Part I: Extensions of the theory of tent spaces

Tent spaces were first introduced by Coifman, Meyer, and Stein [32, 33] as a
unification of fundamental ideas in modern harmonic analysis. Each of the three
chapters of this part provides a different extension of their theory.

Chapter 1: Tent spaces over metric measure spaces under doubling
and related assumptions.

The main focus here is on doubling metric measure spaces (X, d, µ): (X, d) is a
metric space, µ is a Borel measure on (X, d), and the doubling condition

µ(B(x, 2r)) . µ(B(x, r)) (x ∈ X, r > 0)

is satisfied. We define tent spaces T p,q,α(X) associated with such a doubling
metric measure space, and establish properties of T p,q,α(X) analogous to those
established by Coifman, Meyer, and Stein in the case where X is Rn, d is the
Euclidean distance, and µ is the Lebesgue measure.

In particular, we show that these tent spaces are complete (Proposition 1.3.5),
that the tent space scale is closed under duality (Propositions 1.3.10 and 1.3.15)
and forms a complex interpolation scale (Propositions 1.3.12 and 1.3.18), and
that the space T p,q,α(X) is independent of the ‘aperture’ parameter α (Proposi-
tion 1.3.21). The proofs of these results are generally more technical than the
corresponding Euclidean proofs, and we also point out that our proof of the com-
plex interpolation result avoids an error in the original Coifman–Meyer–Stein
argument.
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The prototypical example of a doubling metric measure space is the Euclidean
space Rn with the Euclidean distance and Lebesgue measure. More generally, one
can consider a Riemannian manifold of non-negative Ricci curvature, equipped
with the geodesic distance and Riemannian volume (the curvature assumption
ensures that the doubling condition is satisfied, by the Bishop–Gromov compar-
ison theorem). Tent spaces associated with doubling Riemannian manifolds are
the foundation for the Hardy spaces of differential forms developed by Auscher,
McIntosh, and Russ [13] (see also the more recent work on this topic by Auscher,
McIntosh, and Morris [11]). However, full details of this tent space theory had
not appeared in the literature (with the exception of the atomic decomposition
theorem, which was proven explicitly by Russ [81]). Therefore the material of
this chapter fills a gap which was perhaps neglected in the past.

Chapter 2: Non-uniformly local tent spaces.

In this chapter we consider metric measure spaces (X, d, γ) which are not dou-
bling, but which are—in a certain quantified and non-uniform sense—locally dou-
bling (for the precise definition see Section 2.2). Given such a space, we construct
non-uniformly local tent spaces tp,qα (γ).1 The main difference between these spaces
and those constructed in Chapter 1 is that instead of the full ‘upper half-space’
X × R+, we use an admissible region D ⊂ X × R+ defined in terms of the
‘non-uniform local doubling’ data (see Definition 2.3.1).

Our theory of non-uniformly local tent spaces runs parallel to the theory con-
structed in Chapter 1. We also prove an atomic decomposition theorem (Theorem
2.4.5). Technicalities imposed on us by the non-uniform local doubling assump-
tion force us to require that the metric space (X, d) is complete in the proof of
this theorem.

The model non-uniformly locally doubling metric measure space is the Eu-
clidean space Rn equipped with the Euclidean distance and, in place of the
Lebesgue measure, the Gaussian measure

dγ(x) = 1
(2π)n/2 e

−|x|2/2 dx.

Non-uniformly local tent spaces associated with this space correspond to the
Gaussian tent spaces defined by Maas, van Neerven, and Portal [63]. These are
used in the construction of Gaussian Hardy spaces by Portal [78]. In Examples

1Note that the notation has changed from the first article: such notation changes will occur
in each article.
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2.2.2 and 2.2.4 we provide many other examples of non-uniformly locally doubling
spaces, given by weighted measures analogous to the Gaussian measure.

Chapter 3: Interpolation and embeddings of weighted tent spaces.

Here we return to the setting of doubling metric measure spaces (X, d, µ) as in
Chapter 1. The tent space scale T p,q(X) introduced there (we need not make
reference to the aperture parameter α, as we have already shown the tent spaces
do not depend on it) is expanded: we define weighted tent spaces T p,qs (X) anal-
ogously to the spaces T p,q(X) = T p,q0 (X), the difference being the presence of a
weight µ(B(x, t))−s in the norm. This is motivated by applications to boundary
value problems (which appear in Part II), where it is often natural to measure
the function (t, x) 7→ t−s∇u(t, x) in T p,2(Rn) when u is the solution to an elliptic
PDE.

The weighted tent space scale satisfies the following embedding property:
when the parameters p0, p1, s0, s1 satisfy the relation2

s1 − s0 = 1
p1
− 1
p0
,

we have a continuous embedding

T p0,q
s0 (X) ↪→ T p1,q

s1 (X)

(Theorem 3.3.19). These embeddings are actually quite counterintuitive. For
homogeneous Sobolev spaces a similar embedding property (related to the Hardy–
Littlewood–Sobolev lemma) holds, but this is interpreted as an interchange of
regularity for integrability. In the context of weighted tent spaces, the parameter
s does not actually reflect any kind of regularity.

When X is unbounded and AD-regular, so that in particular we have

µ(B(x, r)) ' rn (x ∈ X, r > 0)

for some n > 0, we identify the real interpolation spaces

(T p0,q
s0 (X), T p1,q

s1 (X))θ,pθ = Zpθ,q
sθ

(X) (1)

when p0, p1, q > 1 (Theorem 3.3.4; see Definition 3.3.3 for the definition of the
spaces Zp,q

s (X)). When X = Rn we extend this result to p0, p1 > 0 (Theorem
2Normally a factor of some ‘dimension’ n should appear on the right hand side, but this

does not appear here because of our convention of using ball volumes as weights.
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3.3.9). The ‘Z-spaces’ Zp,q
s (X) are defined in terms of weighted Lp(X×R+)-norms

of Lq Whitney averages. They have appeared in the work of Barton and May-
boroda on elliptic boundary value problems with data in Besov spaces [21], but
this connection with weighted tent spaces is new. Furthermore, this shows that
Whitney averages arise naturally from the consideration of tent spaces, whereas
in the past their use had always been justified by applications to PDE.

Part II: Abstract Hardy–Sobolev and Besov spaces for el-
liptic boundary value problems with complex L∞ coeffi-
cients.

This part of the thesis, unlike the previous part, consists of one single (long)
article. Broadly speaking, in this article we construct abstract Hardy–Sobolev
and Besov spaces associated with perturbed Dirac operators, and we apply these
spaces to the classification of solutions to Cauchy–Riemann systems. The foun-
dation for our abstract Hardy–Sobolev and Besov spaces is the theory of weighted
tent spaces (and their real interpolants, the Z-spaces) introduced in Chapter 3.

The main trajectory of this article follows the recent works of Auscher and
Stahlhut [16] and Auscher and Mourgoglou [14]. However, we introduce many
new techniques and shed some additional light on their results. For example,
we introduce a new ‘exponent notation’, where boldface letters p are used to
denote pairs (p, s) or triples (∞, s;α). The purpose of this notation is to combine
integrability and regularity, and in turn to make the exponent calculations used in
embeddings and interpolation more intuitive. We also refer to tent spaces T ps and
Z-spaces Zp

s simply asXp, in order to emphasise the fact that these spaces behave
in essentially identical ways. This allows us to streamline our proofs, to handle
spaces T ps and T∞s;α on an equal footing, and to prove results for Hardy–Sobolev
and Besov spaces simultaneously.

A much more detailed overview of the article is contained in the introduction
given there (Chapter 4).

The structure of the thesis

As we have already pointed out, this thesis consists of four distinct articles, and
each article uses different notational conventions. They may be read indepen-
dently, although the later articles do refer to the earlier ones. Their bibliogra-
phies have been consolidated into one single bibliography. With the exception of

4



cosmetic changes and the correction of a few minor errors, the first two articles
(Chapters 1 and 2) are identical to the publications [3] and [5], and the third
article (Chapter 3) is identical to the preprint [4].
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Chapter 1

Tent spaces over metric measure
spaces under doubling and
related assumptions

Abstract

In this article, we define the Coifman–Meyer–Stein tent spaces T p,q,α(X) asso-
ciated with an arbitrary metric measure space (X, d, µ) under minimal geomet-
ric assumptions. While gradually strengthening our geometric assumptions, we
prove duality, interpolation, and change of aperture theorems for the tent spaces.
Because of the inherent technicalities in dealing with abstract metric measure
spaces, most proofs are presented in full detail.

1.1 Introduction

The purpose of this article is to indicate how the theory of tent spaces, as devel-
oped by Coifman, Meyer, and Stein for Euclidean space in [33], can be extended
to more general metric measure spaces. Let X denote the metric measure space
under consideration. If X is doubling, then the methods of [33] seem at first to
carry over without much modification. However, there are some technicalities to
be considered, even in this context. This is already apparent in the proof of the
atomic decomposition given in [81].

Further still, there is an issue with the proof of the main interpolation result
of [33] (see Remark 1.3.20 below). Alternate proofs of the interpolation result
have since appeared in the literature — see for example [44], [23], [31], and [59]
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— but these proofs are given in the Euclidean context, and no indication is given
of their general applicability. In fact, the methods of [44] and [23] can be used
to obtain a partial interpolation result under weaker assumptions than doubling.
This result relies on some tent space duality; we show in Section 1.3.2 that this
holds once we assume that the uncentred Hardy–Littlewood maximal operator is
of strong type (r, r) for all r > 1.1

Finally, we consider the problem of proving the change of aperture result when
X is doubling. The proof in [33] implicitly uses a geometric property of X which
we term (NI), or ‘nice intersections’. This property is independent of doubling,
but holds for many doubling spaces which appear in applications — in particular,
all complete Riemannian manifolds have ‘nice intersections’. We provide a proof
which does not require this assumption.

Acknowledgements

We thank Pierre Portal and Pascal Auscher for their comments and suggestions,
particularly regarding the proofs of Lemmas 1.3.3 and 1.4.6. We further thank
Lashi Bandara, Li Chen, Mikko Kemppainen and Yi Huang for discussions on
this work, as well as the participants of the Workshop in Harmonic Analysis and
Geometry at the Australian National University for their interest and suggestions.
Finally, we thank the referee for their detailed comments.

1.2 Spatial assumptions

Throughout this article, we implicitly assume that (X, d, µ) is a metric measure
space; that is, (X, d) is a metric space and µ is a Borel measure on X. The ball
centred at x ∈ X of radius r > 0 is the set

B(x, r) := {y ∈ X : d(x, y) < r},

and we write V (x, r) := µ(B(x, r)) for the volume of this set. We assume that
the volume function V (x, r) is finite2 and positive; one can show that V is auto-
matically measurable on X × R+.

There are four geometric assumptions which we isolate for future reference:

1This fact is already implicit in [33].
2Since X is a metric space, this implies that µ is σ-finite.
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(Proper) a subset S ⊂ X is compact if and only if it is both closed and bounded,
and the volume function V (x, r) is lower semicontinuous as a function of
(x, r);3

(HL) the uncentred Hardy–Littlewood maximal operator M, defined for mea-
surable functions f on X by

M(f)(x) := sup
B3x

1
µ(B)

ˆ
B

|f(y)| dµ(y) (1.1)

where the supremum is taken over all balls B containing x, is of strong type
(r, r) for all r > 1;

(Doubling) there exists a constant C > 0 such that for all x ∈ X and r > 0,

V (x, 2r) ≤ CV (x, r);

(NI) for all α, β > 0 there exists a positive constant cα,β > 0 such that for all
r > 0 and for all x, y ∈ X with d(x, y) < αr,

µ(B(x, αr) ∩B(y, βr))
V (x, αr) ≥ cα,β.

We do not assume that X satisfies any of these assumptions unless mentioned
otherwise. However, readers are advised to take (X, d, µ) to be a complete Rie-
mannian manifold with its geodesic distance and Riemannian volume if they are
not interested in such technicalities.

It is well-known that doubling implies (HL). However, the converse is not
true. See for example [37] and [82], where it is shown that (HL) is true for R2

with the Gaussian measure. We will only consider (NI) along with doubling,
so we remark that doubling does not imply (NI): one can see this by taking
R2 (now with Lebesgue measure) and removing an open strip.4 One can show
that all complete doubling length spaces—in particular, all complete doubling
Riemannian manifolds—satisfy (NI).

3Note that this is a strengthening of the usual definition of a proper metric space, as the
usual definition does not involve a measure. We have abused notation by using the word ‘proper’
in this way, as it is convenient in this context.

4One could instead remove an open bounded region with sufficiently regular boundary, for
example an open square. This yields a connected example.
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1.3 The basic tent space theory

1.3.1 Initial definitions and consequences

Let X+ denote the ‘upper half-space’ X×R+, equipped with the product measure
dµ(y) dt/t and the product topology. Since X and R+ are metric spaces, with
R+ separable, the Borel σ-algebra on X+ is equal to the product of the Borel
σ-algebras on X and R+, and so the product measure on X+ is Borel (see [26,
Lemma 6.4.2(i)]).

We say that a subset C ⊂ X+ is cylindrical if it is contained in a cylinder:
that is, if there exists x ∈ X and a, b, r > 0 such that C ⊂ B(x, r) × (a, b).
Note that cylindricity is equivalent to boundedness when X+ is equipped with
an appropriate metric, and that compact subsets of X+ are cylindrical.

Cones and tents are defined as usual: for each x ∈ X and α > 0, the cone of
aperture α with vertex x is the set

Γα(x) := {(y, t) ∈ X+ : y ∈ B(x, αt)}.

For any subset F ⊂ X we write

Γα(F ) :=
⋃
x∈F

Γα(x).

For any subset O ⊂ X, the tent of aperture α over O is defined to be the set

Tα(O) := (Γα(Oc))c.

Writing
FO(y, t) := dist(y,Oc)

t
= t−1 inf

x∈Oc
d(y, x),

one can check that Tα(O) = F−1
O ([α,∞)). Since FO is continuous (due to the

continuity of dist(·, Oc)), we find that tents are measurable, and so it follows that
cones are also measurable.

Let F ⊂ X be such that O := F c has finite measure. Given γ ∈ (0, 1), we
say that a point x ∈ X has global γ-density with respect to F if for all balls B
containing x,

µ(B ∩ F )
µ(B) ≥ γ.

We denote the set of all such points by F ∗γ , and define O∗γ := (F ∗γ )c. An important
fact here is the equality

O∗γ = {x ∈ X :M(1O)(x) > 1− γ},
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where 1O is the indicator function of O. We emphasise that M denotes the
uncentred maximal operator. When O is open (i.e. when F is closed), this shows
that O ⊂ O∗γ and hence that F ∗γ ⊂ F . Furthermore, the function M(1O) is
lower semicontinuous whenever 1O is locally integrable (which is always true,
since we assumed O has finite measure), which implies that F ∗γ is closed (hence
measurable) and that O∗γ is open (hence also measurable). Note that if X is
doubling, then sinceM is of weak-type (1, 1), we have that

µ(O∗γ) .γ,X µ(O).

Remark 1.3.1. In our definition of points of γ-density, we used balls containing
x rather than balls centred at x (as is usually done). This is done in order to
avoid using the centred maximal function, which may not be measurable without
assuming continuity of the volume function V (x, r).

Here we find it convenient to introduce the notion of the α-shadow of a subset
of X+. For a subset C ⊂ X+, we define the α-shadow of C to be the set

Sα(C) := {x ∈ X : Γα(x) ∩ C 6= ∅}.

Shadows are always open, for if A ⊂ X+ is any subset, and if x ∈ Sα(A),
then there exists a point (z, tz) ∈ Γα(x) ∩ A, and one can easily show that
B(x, αtz − d(x, z)) is contained in Sα(A).

The starting point of the tent space theory is the definition of the operators
Aαq and Cαq . For q ∈ (0,∞), the former is usually defined for measurable functions
f on Rn+1

+ (with values in R or C, depending on context) by

Aαq (f)(x)q :=
¨

Γα(x)
|f(y, t)|q dλ(y) dt

tn+1

where x ∈ Rn and λ is Lebesgue measure. There are four reasonable ways to
generalise this definition to our possibly non-doubling metric measure space X:5

these take the form

Aαq (f)(x)q :=
¨

Γα(x)
|f(y, t)|q dµ(y)

V (a,bt)
dt

t

where a ∈ {x, y} and b ∈ {1, α}. In all of these definitions, if a function f on X+

is supported on a subset C ⊂ X+, then Aαq (f) is supported on Sα(C); we will
use this fact repeatedly in what follows. Measurability of Aαq (f)(x) in x when

5We do not claim that these are the only reasonable generalisations.
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a = y follows from Lemma 1.4.6 in the Appendix; the choice a = x can be taken
care of with a straightforward modification of this lemma. The choice a = x,
b = 1 appears in [13, 81], and the choice a = y, b = 1 appears in [63, §3]. These
definitions all lead to equivalent tent spaces when X is doubling. We will take
a = y, b = α in our definition, as it leads to the following fundamental technique,
which works with no geometric assumptions on X.

Lemma 1.3.2 (Averaging trick). Let α > 0, and suppose Φ is a nonnegative
measurable function on X+. Then

ˆ
X

¨
Γα(x)

Φ(y, t) dµ(y)
V (y, αt)

dt

t
dµ(x) =

¨
X+

Φ(y, t) dµ(y) dt
t
.

Proof. This is a straightforward application of Fubini–Tonelli’s theorem, which
we present explicitly due to its importance in what follows:

ˆ
X

¨
Γα(x)

Φ(y, t) dµ(y)
V (y, αt)

dt

t
dµ(x)

=
ˆ
X

ˆ ∞
0

ˆ
X

1B(x,αt)(y)Φ(y, t) dµ(y)
V (y, αt)

dt

t
dµ(x)

=
ˆ ∞

0

ˆ
X

ˆ
X

1B(y,αt)(x) dµ(x) Φ(y, t) dµ(y)
V (y, αt)

dt

t

=
ˆ ∞

0

ˆ
X

V (y, αt)
V (y, αt)Φ(y, t) dµ(y) dt

t

=
¨
X+

Φ(y, t) dµ(y) dt
t
.

We will also need the following lemma in order to prove that our tent spaces
are complete. Here we need to make some geometric assumptions.

Lemma 1.3.3. Let X be proper or doubling. Let p, q, α > 0, let K ⊂ X+ be
cylindrical, and suppose f is a measurable function on X+. Then

∣∣∣∣∣∣Aαq (1Kf)
∣∣∣∣∣∣
Lp(X)

. ||f ||Lq(K) .
∣∣∣∣∣∣Aαq (f)

∣∣∣∣∣∣
Lp(X)

, (1.2)

with implicit constants depending on p, q, α, and K.

Proof. Write
K ⊂ B(x, r)× (a, b) =: C
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for some x ∈ X and a, b, r > 0. We claim that there exist constants c0, c1 > 0
such that for all (y, t) ∈ C,

c0 ≤ V (y, αt) ≤ c1.

If X is proper, this is an immediate consequence of the lower semicontinuity of
the ball volume function (recall that we are assuming this whenever we assume
X is proper) and the compactness of the closed cylinder B(x, r) × [a, b]. If X is
doubling, then we argue as follows. Since V (y, αt) is increasing in t, we have that

min
(y,t)∈C

V (y, αt) ≥ min
y∈B(x,r)

V (y, αa)

and
max

(y,t)∈C
V (y, αt) ≤ max

y∈B(x,r)
V (y, αb).

By the argument in the proof of Lemma 1.4.4 (in particular, by (1.16)), there
exists c0 > 0 such that

min
y∈B(x,r)

V (y, αa) ≥ c0.

Furthermore, since
V (y, αb) ≤ V (x, αb+ r)

for all y ∈ B(x, r), we have that

max
y∈B(x,r)

V (y, αb) ≤ V (x, αb+ r) =: c1,

proving the claim.
To prove the first estimate of (1.2), write

∣∣∣∣∣∣Aαq (1Kf)
∣∣∣∣∣∣
Lp(X)

=
ˆ

Sα(K)

(¨
Γα(x)

1K(y, t)|f(y, t)|q dµ(y)
V (y, αt)

dt

t

) p
q

dµ(x)


1
p

.c0,q

ˆ
Sα(K)

(¨
K

|f(y, t)|q dµ(y) dt
t

) p
q

dµ(x)


1
p

.K ||f ||Lq(K) .

To prove the second estimate, first choose finitely many points (xn)Nn=1 such
that

B(x, r) ⊂
N⋃
n=1

B(xn, αa/2)
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using either compactness of B(x, r) (in the proper case) or doubling.6 Write
Bn := B(xn, αa/2). We then have(¨

K

|f(y, t)|q dµ(y) dt
t

) 1
q

.c1

(¨
K

N∑
n=1

1Bn(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t

) 1
q

.X,q

N∑
n=1

(¨
K

1Bn(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t

) 1
q

.

If x, y ∈ Bn, then d(x, y) < αa < αt (since t > a), and so¨
K

1Bn(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t
≤
¨

Γα(x)
|f(y, t)|q dµ(y)

V (y, αt)
dt

t
. (1.3)

We then have
N∑
n=1

(¨
K

1Bn(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t

)1/q

=
N∑
n=1

ˆ
Bn

(¨
K

1Bn(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t

)p/q
dµ(x)

1/p

≤
N∑
n=1

ˆ
Bn

(¨
Γα(x)

|f(y, t)|q dµ(y)
V (y, αt)

dt

t

)p/q
dµ(x)

1/p

≤ N
(

max
n

µ(Bn)−1/p
)ˆ

X

(¨
Γα(x)

|f(y, t)|q dµ(y)
V (y, αt)

dt

t

)p/q
dµ(x)

1/p

.K,p,α

∣∣∣∣∣∣Aαq (f)
∣∣∣∣∣∣
Lp(X)

,

which completes the proof.

As usual, with α > 0 and p, q ∈ (0,∞), we define the tent space (quasi-)norm
of a measurable function f on X+ by

||f ||T p,q,α(X) :=
∣∣∣∣∣∣Aαq (f)

∣∣∣∣∣∣
Lp(X)

,

and the tent space T p,q,α(X) to be the (quasi-)normed vector space consisting of
all such f (defined almost everywhere) for which this quantity is finite.
Remark 1.3.4. One can define the tent space as either a real or complex vector
space, according to one’s own preference. We will implicitly work in the complex
setting (so our functions will always be C-valued). Apart from complex interpo-
lation, which demands that we consider complex Banach spaces, the difference is
immaterial.

6In the doubling case, this is a consequence of what is usually called ‘geometric doubling’.
A proof that this follows from the doubling condition can be found in [34, §III.1].
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Proposition 1.3.5. Let X be proper or doubling. For all p, q, α ∈ (0,∞), the
tent space T p,q,α(X) is complete and contains Lqc(X+) (the space of functions
f ∈ Lq(X+) with cylindrical support) as a dense subspace.

Proof. Let (fn)n∈N be a Cauchy sequence in T p,q,α(X). Then by Lemma 1.3.3,
for every cylindrical subset K ⊂ X+ the sequence (1Kfn)n∈N is Cauchy in Lq(K).
We thus obtain a limit

fK := lim
n→∞

1Kfn ∈ Lq(K)

for each K. If K1 and K2 are two cylindrical subsets of X+, then fK1 |K1∩K2 =
fK2 |K1∩K2 , so by making use of an increasing sequence {Km}m∈N of cylindrical
subsets of X+ whose union is X+ (for example, we could take Km := B(x,m)×
(1/m,m) for some x ∈ X) we obtain a function f ∈ Lqloc(X+) with f |Km = fKm
for each m ∈ N.7 This is our candidate limit for the sequence (fn)n∈N.

To see that f lies in T p,q,α(X), write for any m,n ∈ N

||1Kmf ||T p,q,α(X) .p,q ||1Km(f − fn)||T p,q,α(X) + ||1Kmfn||T p,q,α(X)

≤ Cp,q,α,X,m ||f − fn||Lq(Km) + ||fn||T p,q,α(X) ,

the (p, q)-dependence in the first estimate being relevant only for p < 1 or q < 1,
and the second estimate coming from Lemma 1.3.3. Since the sequence (fn)n∈N
converges to 1Kmf in Lq(Km) and is Cauchy in T p,q,α(X), we have that

||1Kmf ||T p,q,α(X) . sup
n∈N
||fn||T p,q,α(X)

uniformly in m. Hence ||f ||T p,q,α(X) is finite.
We now claim that for all ε > 0 there existsm ∈ N such that for all sufficiently

large n ∈ N, we have ∣∣∣∣∣∣1Kc
m

(fn − f)
∣∣∣∣∣∣
T p,q,α(X)

≤ ε.

Indeed, since the sequence (fn)n∈N is Cauchy in T p,q,α(X), there exists N ∈ N
such that for all n, n′ ≥ N we have ||fn − fn′||T p,q,α(X) < ε/2. Furthermore, since

lim
m→∞

∣∣∣∣∣∣1Kc
m

(fN − f)
∣∣∣∣∣∣
T p,q,α(X)

= 0

by the Dominated Convergence Theorem, we can choose m such that∣∣∣∣∣∣1Kc
m

(fN − f)
∣∣∣∣∣∣
T p,q,α(X)

< ε/2.

7We interpret ‘locally integrable on X+’ as meaning ‘integrable on all cylinders’, rather than
‘integrable on all compact sets’.
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Then for all n ≥ N ,∣∣∣∣∣∣1Kc
m

(fn − f)
∣∣∣∣∣∣
T p,q,α(X)

.p,q

∣∣∣∣∣∣1Kc
m

(fn − fN)
∣∣∣∣∣∣
T p,q,α(X)

+
∣∣∣∣∣∣1Kc

m
(fN − f)

∣∣∣∣∣∣
T p,q,α(X)

≤ ||fn − fN ||T p,q,α(X) +
∣∣∣∣∣∣1Kc

m
(fN − f)

∣∣∣∣∣∣
T p,q,α(X)

< ε,

proving the claim.
Finally, by the previous remark, for all ε > 0 we can find m such that for all

sufficiently large n ∈ N we have

||fn − f ||T p,q,α(X) .p,q ||1Km(fn − f)||T p,q,α(X) +
∣∣∣∣∣∣1Kc

m
(fn − f)

∣∣∣∣∣∣
T p,q,α(X)

< ||1Km(fn − f)||T p,q,α(X) + ε

≤ C(p, q, α,X,m) ||fn − f ||Lq(Km) + ε.

Taking the limit of both sides as n→∞, we find that limn→∞ fn = f in T p,q,α(X),
and therefore T p,q,α(X) is complete.

To see that Lqc(X+) is dense in T p,q,α(X), simply write f ∈ T p,q,α(X) as the
pointwise limit

f = lim
n→∞

1Knf.

By the Dominated Convergence Theorem, this convergence holds in T p,q,α(X).

We note that Lemma 1.3.2 implies that in the case where p = q, we have
T p,p,α(X) = Lp(X+) for all α > 0.

In the same way as Lemma 1.3.2, we can prove the analogue of [33, Lemma
1].

Lemma 1.3.6 (First integration lemma). For any nonnegative measurable func-
tion Φ on X+, with F a measurable subset of X and α > 0,ˆ

F

¨
Γα(x)

Φ(y, t) dµ(y) dt dµ(x) ≤
¨

Γα(F )
Φ(y, t)V (y, αt) dµ(y) dt.

Remark 1.3.7. There is one clear disadvantage of our choice of tent space norm:
it is no longer clear that

||·||T p,q,α(X) ≤ ||·||T p,q,β(X) (1.4)

when α < β. In fact, this may not even be true for general non-doubling spaces.
This is no great loss, since for doubling spaces we can revert to the ‘original’ tent
space norm (with a = x and b = 1) at the cost of a constant depending only on
X, and for this choice of norm (1.4) is immediate.
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In order to define the tent spaces T∞,q,α(X), we need to introduce the operator
Cαq . For measurable functions f on X+, we define

Cαq (f)(x) := sup
B3x

(
1

µ(B)

¨
Tα(B)

|f(y, t)|q dµ(y) dt
t

) 1
q

,

where the supremum is taken over all balls containing x. Since Cαq (f) is lower
semicontinuous (see Lemma 1.4.7), Cαq (f) is measurable. For functions f on X+

we define the (quasi-)norm ||·||T∞,q,α(X) by

||f ||T∞,q,α(X) :=
∣∣∣∣∣∣Cαq (f)

∣∣∣∣∣∣
L∞(X)

,

and the tent space T∞,q,α(X) as the (quasi-)normed vector space of measurable
functions f on X+, defined almost everywhere, for which ||f ||T∞,q,α(X) is finite.
The proof that T∞,q,α(X) is a (quasi-)Banach space is similar to that of Propo-
sition 1.3.5 once we have established the following analogue of Lemma 1.3.3.

Lemma 1.3.8. Let q, α > 0, let K ⊂ X+ be cylindrical, and suppose f is a
measurable function on X+. Then

||f ||Lq(K) . ||f ||T∞,q,α(X) , (1.5)

with implicit constant depending only on α, q, and K (but not otherwise on X).
Furthermore, if X is proper or doubling, then we also have

||1Kf ||T∞,q,α(X) . ||f ||Lq(K) ,

again with implicit constant depending only on α, q, and K.

Proof. We use Lemma 1.4.4. To prove the first estimate, for each ε > 0 we can
choose a ball Bε such that Tα(Bε) ⊃ K and µ(Bε) < β1(K) + ε. Then

||f ||Lq(K) ≤
∣∣∣∣∣∣1Tα(Bε)f

∣∣∣∣∣∣
Lq(X+)

= µ(Bε)
1
qµ(Bε)−

1
q

∣∣∣∣∣∣1Tα(Bε)f
∣∣∣∣∣∣
Lq(X+)

≤ (β1(K) + ε)
!
q ||f ||T∞,q,α(X) .

In the final line we used that µ(Bε) > 0 to conclude that

µ(Bε)−1/q
∣∣∣∣∣∣1Tα(Bε)f

∣∣∣∣∣∣
Lq(X+)

is less than the essential supremum of Cαq (f). Since ε > 0 was arbitrary, we have
the first estimate.
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For the second estimate, assuming that X is proper or doubling, observe that

||1Kf ||T∞,q,α(X) ≤ sup
B⊂X

(
1

µ(B)

¨
Tα(B)∩K

|f(y, t)|q dµ(y) dt
t

) 1
q

≤
(

1
β0(K)

¨
K

|f(y, t)|q dµ(y)dt
t

) 1
q

= β0(K)−
1
q ||f ||Lq(K) ,

completing the proof.

Remark 1.3.9. In this section we did not impose any geometric conditions on our
space X besides our standing assumptions on the measure µ and the proper-
ness assumption (in the absence of doubling). Thus we have defined the tent
space T p,q,α(X) in considerable generality. However, what we have defined is a
global tent space, and so this concept may not be inherently useful when X is
non-doubling. Instead, our interest is to determine precisely where geometric
assumptions are needed in the tent space theory.

1.3.2 Duality, the vector-valued approach, and complex
interpolation

Midpoint results

The geometric assumption (HL) from Section 1.2 now comes into play. For r ≥ 0,
we denote the Hölder conjugate of r by r′ := r/(r − 1) with r′ =∞ when r = 1.

Proposition 1.3.10. Suppose that X is either proper or doubling, and satisfies
assumption (HL). Then for p, q ∈ (1,∞) and α > 0, the pairing

〈f, g〉 :=
¨
X+

f(y, t)g(y, t) dµ(y) dt
t

(f ∈ T p,q,α(X), g ∈ T p′,q′,α(X))

realises T p′,q′,α(X) as the Banach space dual of T p,q,α(X), up to equivalence of
norms.

This is proved in the same way as in [33]. We provide the details in the interest
of self-containment.

Proof. We first remark that if p = q, the duality statement is a trivial consequence
of the equality T p,p,α(X) = Lp(X+).
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In general, suppose f ∈ T p,q,α(X) and g ∈ T p′,q′,α(X). Then by the averaging
trick and Hölder’s inequality, we have

|〈f, g〉| ≤
ˆ
X

¨
Γα(x)

|f(y, t)g(y, t)| dµ(y)
V (y, αt)

dt

t
dµ(x)

≤
ˆ
X

Aαq (f)(x)Aαq′(g)(x) dµ(x)

≤ ||f ||T p,q,α(X) ||g||T p′,q′,α(X) . (1.6)

Thus every g ∈ T p′,q′,α(X) induces a bounded linear functional on T p,q,α(X) via
the pairing 〈·, ·〉, and so T p′,q′,α(X) ⊂ (T p,q,α(X))∗.

Conversely, suppose ` ∈ (T p,q,α(X))∗. If K ⊂ X+ is cylindrical, then by
the properness or doubling assumption, we can invoke Lemma 1.3.3 to show
that ` induces a bounded linear functional `K ∈ (Lq(K))∗, which can in turn
be identified with a function gK ∈ Lq

′(K). By covering X+ with an increasing
sequence of cylindrical subsets, we thus obtain a function g ∈ Lq

′

loc(X+) such that
g|K = gK for all cylindrical K ⊂ X+.

If f ∈ Lq(X+) is cylindrically supported, then we have

¨
X+

f(y, t)g(y, t) dµ(y) dt
t

=
¨

supp f
f(y, t)gsupp f (y, t) dµ(y) dt

t

= `supp f (f)
= `(f), (1.7)

recalling that f ∈ T p,q,α(X) by Lemma 1.3.3. Since the cylindrically supported
Lq(X+) functions are dense in T p,q,α(X), the representation (1.7) of `(f) in terms
of g is valid for all f ∈ T p,q,α(X) by dominated convergence and the inequality
(1.6), provided we show that g is in T p′,q′,α(X).

Now suppose p < q. We will show that g lies in T p
′,q′,α(X), thus showing

directly that (T p,q,α(X))∗ is contained in T p′,q′,α(X). It suffices to show this for
gK , where K ⊂ X+ is an arbitrary cylindrical subset, provided we obtain an
estimate which is uniform in K. We estimate

||gK ||q
′

T p′,q′,α(X) =
∣∣∣∣∣∣Aαq′(gK)q′

∣∣∣∣∣∣
Lp
′/q′ (X)

by duality. Let ψ ∈ L(p′/q′)′(X) be nonnegative, with ||ψ||L(p′/q′)′ (X) ≤ 1. Then by
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Fubini–Tonelli’s theorem,
ˆ
X

Aαq′(gK)(x)q′ψ(x) dµ(x)

=
ˆ
X

¨
X+

1B(y,αt)(x)|gK(y, t)|q′ dµ(y)
V (y, αt)

dt

t
ψ(x) dµ(x)

=
ˆ ∞

0

ˆ
X

1
V (y, αt)

ˆ
B(y,αt)

ψ(x) dµ(x) |gK(y, t)|q′ dµ(y) dt
t

=
¨
X+

Mαtψ(y)|gK(y, t)|q′ dµ(y) dt
t
,

where Ms is the averaging operator defined for y ∈ X and s > 0 by

Msψ(y) := 1
V (y, s)

ˆ
B(y,s)

ψ(x) dµ(x).

Thus we can write formally
ˆ
X

Aαq′(gK)(x)q′ψ(x) dµ(x) = 〈fψ, gK〉, (1.8)

where we define

fψ(y, t) :=

 Mαtψ(y)gK(y, t)q
′/2
gK(y, t)(q′/2)−1 when gK(y, t) 6= 0,

0 when gK(y, t) = 0,

noting that gK(y, t)(q′/2)−1 is not defined when gK(y, t) = 0 and q′ < 2. However,
the equality (1.8) is not valid until we show that fψ lies in T p,q,α(X). To this end,
estimate

Aαq (fψ) ≤
(¨

Γα(x)
Mαtψ(y)q|gK(y, t)|q(q′−1) dµ(y)

V (y, αt)
dt

t

) 1
q

≤
(¨

Γα(x)
Mψ(x)q|gK(y, t)|q′ dµ(y)

V (y, αt)
dt

t

) 1
q

=Mψ(x)Aαq′(gK)(x)q′/q.

Taking r such that 1/p = 1/r + 1/(p′/q′)′ and using (HL), we then have∣∣∣∣∣∣Aαq (fψ)
∣∣∣∣∣∣
Lp(X)

≤
∣∣∣∣∣∣(Mψ)Aαq′(gK)q′/q

∣∣∣∣∣∣
Lp(X)

≤ ||Mψ||L(p′/q′)′ (X)

∣∣∣∣∣∣Aαq′(gK)q′/q
∣∣∣∣∣∣
Lr(X)

.X ||ψ||L(p′/q′)′ (X)

∣∣∣∣∣∣Aαq′(gK)
∣∣∣∣∣∣q′/q
Lrq
′/q(X)

≤
∣∣∣∣∣∣Aαq′(gK)

∣∣∣∣∣∣q′/q
Lrq
′/q(X)

.
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One can show that rq′/q = p′, and so fψ is in T p,q,α(X) by Lemma 1.3.3. By
(1.8), taking the supremum over all ψ under consideration, we can write

||gK ||q
′

T p′,q′,α(X) ≤ ||`|| ||fψ||T p,q,α(X)

.X ||`|| ||gK ||q
′/q

T p′,q′,α(X) ,

and consequently, using that ||gK ||T p′,q′,α(X) <∞,

||gK ||T p′,q′,α(X) .X ||`|| .

Since this estimate is independent of K, we have shown that g ∈ T p′,q′,α(X), and
therefore that (T p,q,α(X))∗ is contained in T p′,q′,α(X). This completes the proof
when p < q.

To prove the statement for p > q, it suffices to show that the tent space
T p
′,q′,α(X) is reflexive. Thanks to the Eberlein–S̆mulian theorem (see [1, Corollary

1.6.4]), this is equivalent to showing that every bounded sequence in T p′,q′,α(X)
has a weakly convergent subsequence.

Let {fn}n∈N be a sequence in T p
′,q′,α(X) with ||fn||T p′,q′,α(X) ≤ 1 for all n ∈

N. Then by Lemma 1.3.3, for all cylindrical K ⊂ X+ the sequence {fn}n∈N is
bounded in Lq

′(K), and so by reflexivity of Lq′(K) we can find a subsequence
{fnj}j∈N which converges weakly in Lq′(K). We will show that this subsequence
also converges weakly in T p′,q′,α(X).

Let ` ∈ (T p′,q′,α(X))∗. Since p′ < q′, we have already shown that there exists
a function g ∈ T p,q,α(X) such that `(f) = 〈f, g〉. For every ε > 0, we can find a
cylindrical set Kε ⊂ X+ such that

||g − 1Kεg||T p,q,α(X) ≤ ε.

Thus for all i, j ∈ N and for all ε > 0 we have

`(fni)− `(fnj) = 〈fni − fnj ,1Kεg〉+ 〈fni − fnj , g − 1Kεg〉
≤ 〈fni − fnj ,1Kεg〉

+
(
||fni||T p′,q′,α(X) +

∣∣∣∣∣∣fnj ∣∣∣∣∣∣T p′,q′,α(X)

)
||g − 1Kεg||T p,q,α

≤ 〈fni − fnj ,1Kεg〉+ 2ε.

As i, j → ∞, the first term on the right hand side above tends to 0, and so
we conclude that {fnj}n∈N converges weakly in T p

′,q′,α(X). This completes the
proof.
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Remark 1.3.11. As mentioned earlier, property (HL) is weaker than doubling, but
this is still a strong assumption. We note that for Proposition 1.3.10 to hold for
a given pair (p, q), the uncentred Hardy–Littlewood maximal operator need only
be of strong type ((p′/q′)′, (p′/q′)′). Since (p′/q′)′ is increasing in p and decreasing
in q, the condition required on X is stronger as p→ 1 and q →∞.

Given Proposition 1.3.10, we can set up the vector-valued approach to tent
spaces (first considered in [44]) using the method of [23]. Fix p ∈ (0,∞), q ∈
(1,∞), and α > 0. For simplicity of notation, write

Lqα(X+) := Lq
(
X+; dµ(y)

V (y, αt)
dt

t

)
.

We define an operator Tα : T p,q,α(X)→ Lp(X;Lqα(X+)) from the tent space into
the Lqα(X+)-valued Lp space on X (see [35, §2] for vector-valued Lebesgue spaces)
by setting

Tαf(x)(y, t) := f(y, t)1Γα(x)(y, t).

One can easily check that

||Tαf ||Lp(X;Lqα(X+)) = ||f ||T p,q,α(X) ,

and so the tent space T p,q,α(X) can be identified with its image under Tα in
the space Lp(X;Lqα(X+)), provided that Tαf is indeed a strongly measurable
function of x ∈ X. This can be shown for q ∈ (1,∞) by recourse to Pettis’
measurability theorem [35, §2.1, Theorem 2], which reduces the question to that
of weak measurability of Tαf . To prove weak measurability, suppose g ∈ Lq′α (X);
then

〈Tαf(x), g〉 =
¨

Γα(x)
f(y, t)g(y, t) dµ(y)

V (y, αt)
dt

t
,

which is measurable in x by Lemma 1.4.6. Thus Tαf is weakly measurable, and
therefore Tαf is strongly measurable as claimed.

Now assume p, q ∈ (1,∞) and consider the operator Πα, sending X+-valued
functions on X to C-valued functions on X+, given by

(ΠαF )(y, t) := 1
V (y, αt)

ˆ
B(y,αt)

F (x)(y, t) dµ(x)

whenever this expression is defined. Using the duality pairing from Proposition
1.3.10 and the duality pairing 〈〈·, ·〉〉 for vector-valued Lp spaces, for f ∈ T p,q,α(X)
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and G ∈ Lp′(X;Lq′α (X+)) we have

〈〈Tαf,G〉〉 =
ˆ
X

¨
X+

Tαf(x)(y, t)G(x)(y, t) dµ(y)
V (y, αt)

dt

t
dµ(x)

=
¨
X+

f(y, t)
V (y, αt)

ˆ
X

1B(y,αt)(x)G(x)(y, t) dµ(x) dµ(y) dt
t

=
¨
X+

f(y, t)(ΠαG)(y, t) dµ(y) dt
t

= 〈〈f,ΠαG〉〉.

Thus Πα maps Lp′(X;Lq′α (X+)) to T p′,q′,α(X), by virtue of being the adjoint of
Tα. Consequently, the operator Pα := TαΠα is bounded from Lp(X;Lqα(X+)) to
itself for p, q ∈ (1,∞). A quick computation shows that ΠαTα = I, so that Pα
projects Lp(X;Lqα(X+)) onto Tα(T p,q,α(X)). This shows that Tα(T p,q,α(X)) is a
complemented subspace of Lp(X;Lqα(X+)). This observation leads to the basic
interpolation result for tent spaces. Here [·, ·]θ denotes the complex interpolation
functor (see [22, Chapter 4]).

Proposition 1.3.12. Suppose that X is either proper or doubling, and satisfies
assumption (HL). Then for p0, p1, q0, and q1 in (1,∞), θ ∈ [0, 1], and α > 0, we
have (up to equivalence of norms)

[T p0,q0,α(X), T p1,q1,α(X)]θ = T p,q,α(X),

where 1/p = (1− θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1.

Proof. Recall the identification

T r,s,α(X) ∼= TαT
r,s,α(X) ⊂ Lr(X;Lsα(X+))

for all r ∈ (0,∞) and s ∈ (1,∞). Since

[Lp0(X;Lq0
α (X+)), Lp1(X;Lq1

α (X+))]θ = Lp(X; [Lq0
α (X+), Lq1

α (X+)]θ)
= Lp(X;Lqα(X+))

applying the standard result on interpolation of complemented subspaces with
common projections (see [89, Theorem 1.17.1.1]) yields

[T p0,q0,α(X), T p1,q1,α(X)]θ = Lp(X;Lqα(X+)) ∩ (T p0,q0,α(X) + T p1,q1,α(X))
= T p,q,α(X).
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Remark 1.3.13. Since [89, Theorem 1.17.1.1] is true for any interpolation functor
(not just complex interpolation), analogues of Proposition 1.3.12 hold for any
interpolation functor F for which the spaces Lp(X;Lqα(X+)) form an appropriate
interpolation scale. In particular, Proposition 1.3.12 (appropriately modified)
holds for real interpolation.

Remark 1.3.14. Following the first submission of this article, the anonymous ref-
eree suggested a more direct proof of Proposition 1.3.12, which avoids inter-
polation of complemented subspaces. Since Tα acts as an isometry both from
T p0,q0,α(X) to Lp0(X;Lq0

α (X+)) and from T p1,q1,α(X) to Lp1(X;Lq1
α (X+)), if f is

in the interpolation space [T p0,q0,α(X), T p1,q1,α(X)]θ, then

||f ||T p,q,α(X) = ||Tαf ||Lp(X;Lqα(X+)) ≤ ||f ||[T p0,q0,α(X),T p1,q1,α(X)]θ

due to the exactness of the complex interpolation functor (and similarly for the
real interpolation functor). Hence [T p0,q0,α(X), T p1,q1,α(X)]θ ⊂ T p,q,α(X), and the
reverse containment follows by duality. We have chosen to include both proofs
for their own intrinsic interest.

Endpoint results

We now consider the tent spaces T 1,q,α(X) and T∞,q,α(X), and their relation to
the rest of the tent space scale. In this section, we prove the following duality
result using the method of [33].

Proposition 1.3.15. Suppose X is doubling, and let α > 0 and q ∈ (1,∞). Then
the pairing 〈·, ·〉 of Proposition 1.3.10 realises T∞,q,α(X) as the Banach space dual
of T 1,q,α(X), up to equivalence of norms.

As in [33], we require a small series of definitions and lemmas to prove this
result. We define truncated cones for x ∈ X, α, h > 0 by

Γαh(x) := Γα(x) ∩ {(y, t) ∈ X+ : t < h},

and corresponding Lusin operators for q > 0 by

Aαq (f |h)(x) :=
¨

Γα
h

(x)
|f(y, t)|q dµ(y)

V (y, αt)
dt

t

 1
q

.

One can show that Aαq (f |h) is measurable in the same way as for Aαq (f).
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Lemma 1.3.16. For each measurable function g on X+, each q ∈ [1,∞), and
each M > 0, define

hαg,q,M(x) := sup{h > 0 : Aαq (g|h)(x) ≤MCαq (g)(x)}

for x ∈ X. If X is doubling, then for sufficiently large M (depending on X, q,
and α), whenever B ⊂ X is a ball of radius r,

µ{x ∈ B : hαg,q,M(x) ≥ r} &X,α µ(B).

Proof. Let B ⊂ X be a ball of radius r. Applying Lemmas 1.4.5 and 1.3.6, the
definition of Cαq , and doubling, we have
ˆ
B

Aαq (g|r)(x)q dµ(x) =
ˆ
B

¨
Γαr (x)

1Tα((2α+1)B)(y, t)|g(y, t)|q dµ(y)
V (y, αt)

dt

t
dµ(x)

≤
ˆ
B

¨
Γα(x)

1Tα((2α+1)B)(y, t)|g(y, t)|q dµ(y)
V (y, αt)

dt

t
dµ(x)

≤
¨
Tα((2α+1)B)

|g(y, t)|q dµ(y) dt
t

≤ µ((2α + 1)B) inf
x∈B
Cαq (g)(x)q

.X,α µ(B) inf
x∈B
Cαq (g)(x)q.

We can estimateˆ
B

Aαq (g|r)(x)q dµ(x) ≥
(
M inf

x∈B
Cαq (g)(x)

)q
·

· µ
{
x ∈ B : Aαq (g|r)(x) > M inf

x∈B
Cαq (g)(x)

}
,

and after rearranging and combining with the previous estimate we get

M q
(
µ(B)− µ{x ∈ B : Aαq (g|r)(x) ≤M inf

x∈B
Cαq (g)(x)}

)
.X,α µ(B).

More rearranging and straightforward estimating yields

µ{x ∈ B : Aαq (g|r)(x) ≤MCαq (g)(x)} ≥ (1−M−qCX,α)µ(B).

Since hαg,q,M(x) ≥ r if and only if Aαq (g|r)(x) ≤MCαq (g)(x) as Aαq (g|h) is increas-
ing in h, we can rewrite this as

µ{x ∈ B : hαg,q,M(x) ≥ r} ≥ (1−M−qCX,α)µ(B).

Choosing M > C
1/q
X,α completes the proof.
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Corollary 1.3.17. With X, g, q, and α as in the statement of the previous
lemma, there exists M = M(X, q, α) such that whenever Φ is a nonnegative
measurable function on X+, we have
¨
X+

Φ(y, t)V (y, αt) dµ(y) dt .X,α

ˆ
X

¨
Γα
hα
g,q,M

(x)/α(x)
Φ(y, t) dµ(y) dt dµ(x).

Proof. This is a straightforward application of Fubini–Tonelli’s theorem along
with the previous lemma. Taking M sufficiently large, Lemma 1.3.16 gives

¨
X+

Φ(y, t)V (y, αt) dµ(y) dt

.X,α

¨
X+

Φ(y, t)
ˆ
{x∈B(y,αt):hαg,q,M(x)≥αt}

dµ(x) dµ(y) dt

=
ˆ
X

ˆ hαg,q,M (x)/α

0

ˆ
B(x,αt)

Φ(y, t) dµ(y) dt dµ(x)

=
ˆ
X

¨
Γα
hα
g,q,M

(x)/α(x)
Φ(y, t) dµ(y) dt dµ(x)

as required.

We are now ready for the proof of the main duality result.

Proof of Proposition 1.3.15. First suppose f ∈ T 1,q,α(X) and g ∈ T∞,q′,α(X). By
Corollary 1.3.17, there exists M = M(X, q, α) > 0 such that

¨
X+
|f(y, t)||g(y, t)| dµ(y) dt

t

.X,α

ˆ
X

¨
Γα
h(x)(x)

|f(y, t)||g(y, t)| dµ(y)
V (y, αt)

dt

t
dµ(x),

where h(x) := hαg,q′,M(x)/α. Using Hölder’s inequality and the definition of h(x),
we find that

ˆ
X

¨
Γα
h(x)(x)

|f(y, t)||g(y, t)| dµ(y)
V (y, αt)

dt

t

 dµ(x)

≤
ˆ
X

Aαq (f |h(x))(x)Aαq′(g|h(x))(x) dµ(x)

≤M

ˆ
X

Aαq (f)(x)Cαq′(g)(x) dµ(x)

.X,q,α ||f ||T 1,q,α(X) ||g||T∞,q,α(X) .
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Hence every g ∈ T∞,q′,α(X) induces a bounded linear functional on T 1,q,α(X) via
the pairing 〈f, g〉 above, and so T∞,q′,α(X) ⊂ (T 1,q,α(X))∗.

Conversely, suppose ` ∈ (T 1,q,α(X))∗. Then as in the proof of Proposition
1.3.10, from ` we construct a function g ∈ Lq

′

loc(X+) such that¨
X+

f(y, t)g(y, t) dµ(y) dt
t

= `(f)

for all f ∈ T 1,q,α(X) with cylindrical support. We just need to show that g is in
T∞,q

′,α(X). By the definition of the T∞,q′,α(X) norm, it suffices to estimate(
1

µ(B)

¨
Tα(B)

|g(y, t)|q′ dµ(y) dt
t

) 1
q′

,

where B ⊂ X is an arbitrary ball.
For all nonnegative ψ ∈ Lq(Tα(B)) with ||ψ||Lq(Tα(B)) ≤ 1, using that

Sα(Tα(B)) = B

we have that

||ψ||T 1,q,α(X) =
ˆ
B

Aαq (ψ)(x) dµ(x)

≤ µ(B)1/q′ ||ψ||T q,q,α(X)

= µ(B)1/q′ ||ψ||Lq(X+)

≤ µ(B)1/q′ .

In particular, ψ is in T 1,q,α(X), so we can write¨
Tα(B)

gψ dµ
dt

t
= `(ψ).

Arguing by duality and using the above computation, we then have(
1

µ(B)

¨
Tα(B)

|g(y, t)|q′ dµ(y) dt
t

)1/q′

= µ(B)−1/q′ sup
ψ

¨
Tα(B)

gψ dµ
dt

t

= µ(B)−1/q′ sup
ψ
`(ψ)

≤ µ(B)−1/q′ ||`|| ||ψ||T 1,q,α(X)

≤ ||`|| ,

where the supremum is taken over all ψ described above. Now taking the supre-
mum over all balls B ⊂ X, we find that

||g||T∞,q′,α(X) ≤ ||`|| ,

which completes the proof that (T 1,q,α(X))∗ ⊂ T∞,q
′,α(X).
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Once Proposition 1.3.15 is established, we can obtain the full scale of inter-
polation using the ‘convex reduction’ argument of [23, Theorem 3] and Wolff’s
reiteration theorem (see [92] and [54]).

Proposition 1.3.18. Suppose that X is doubling. Then for p0, p1 ∈ [1,∞] (not
both equal to ∞), q0 and q1 in (1,∞), θ ∈ [0, 1], and α > 0, we have (up to
equivalence of norms)

[T p0,q0,α(X), T p1,q1,α(X)]θ = T p,q,α(X),

where 1/p = (1− θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1.

Proof. First we will show that

[T 1,q0,α(X), T p1,q1,α(X)]θ ⊃ T p,q,α(X). (1.9)

Suppose f ∈ T p,q,α(X) is a cylindrically supported simple function. Then there
exists another cylindrically supported simple function g such that f = g2. Then

||f ||T p,q,α(X) = ||g||2T 2p,2q,α(X) ,

and so g is in T 2p,2q,α(X). By Proposition 1.3.12 we have the identification

T 2p,2q,α(X) = [T 2,2q0,α(X), T 2p1,2q1,α(X)]θ (1.10)

up to equivalence of norms, and so by the definition of the complex interpolation
functor (see Section 1.4.3), there exists for each ε > 0 a function

Gε ∈ F(T 2,2q0,α(X), T 2p1,2q1,α(X))

such that Gε(θ) = g and

||Gε||F(T 2,2q0,α(X),T 2p1,2q1,α(X) ≤ (1 + ε) ||g||[T 2,2q0,α(X),T 2p1,2q1,α(X)]θ

' (1 + ε) ||g||T 2p,2q,α(X) ,

the implicit constant coming from the norm equivalence (1.10). Define Fε := G2
ε.

Then we have
Fε ∈ F(T 1,q0,α(X), T p1,q1,α(X)),

with

||Fε||F(T 1,q0,α(X),T p1,q1,α(X)) = ||Gε||2F(T 2,2q0,α(X),T 2p1,2q1,α(X))

. (1 + ε)2 ||g||2T 2p,2q,α(X)

= (1 + ε)2 ||f ||T p,q,α(X) .
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Therefore
||f ||[T 1,q0,α(X),T p1,q1,α(X)]θ . ||f ||T p,q,α(X) ,

and so the inclusion (1.9) follows from the fact that cylindrically supported simple
functions are dense in T p,q,α(X).

By the duality theorem [22, Corollary 4.5.2] for interpolation (using reflexivity
of T p1,q1,α(X)), the inclusion (1.9), and Propositions 1.3.10 and 1.3.15, we have

[T p′1,q′1,α(X), T∞,q′0,α(X)]1−θ ⊂ T p
′,q′,α(X).

Therefore we have the containment

[T p0,q0,α(X), T∞,q1,α(X)]θ ⊂ T p,q,α(X). (1.11)

The reverse containment can be obtained from

[T 1,q0,α(X), T p1,q1,α(X)]θ ⊂ T p,q,α(X) (1.12)

(for p1, q0, q1 ∈ (1,∞)) by duality. The containment (1.12) can be obtained as
in Remark 1.3.14, with p0 = 1 not changing the validity of this method.8

Finally, it remains to consider the case when p0 = 1 and p1 = ∞. This
is covered by Wolff reiteration. Set A1 = T 1,q0,α(X), A2 = T p,q,α(X), A3 =
T p+1,q3,α(X), and A4 = T∞,q1,α(X) for an approprate choice of q3.9 Then for
an appropriate index η, we have [A1, A3]θ/η = A2 and [A2, A4](η−θ)/(1−θ) = A3.
Therefore by Wolff reiteration, we have [A1, A4]θ = A2; that is,

[T 1,q0,α(X), T∞,q1,α(X)]θ = T p,q,α(X).

This completes the proof.

Remark 1.3.19. Note that doubling is not explicitly used in the above proof; it
is only required to the extent that it is needed to prove Propositions 1.3.10 and
1.3.15 (as Proposition 1.3.12 follows from 1.3.10). If these propositions could be
proven under some assumptions other than doubling, then it would follow that
Proposition 1.3.18 holds under these assumptions.

Remark 1.3.20. The proof of [33, Lemma 5], which amounts to proving the con-
tainment (1.9), contains a mistake which is seemingly irrepairable without re-
sorting to more advanced techniques. This mistake appears on page 323, line

8We thank the anonymous referee once more for this suggestion.
9More precisely, we need to take 1/q3 = (1− 1/p′)/q0 + (1/p′)/q1.
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-3, when it is stated that “A(fk) is supported in O∗k − Ok+1” (and in particular,
that A(fk) is supported in Oc

k+1). However (reverting to our notation), since
fk := 1T ((Ok)∗γ)\T ((Ok+1)∗γ)f , A1

2(fk) is supported on

S1(T ((Ok)∗γ) \ T ((Ok+1)∗γ)) = (Ok)∗γ

and we cannot conclude that A1
2(fk) is supported away from Ok+1. Simple 1-

dimensional examples can be constructed which show that this is false in general.
Hence the containment (1.9) is not fully proven in [33]; the first valid proof in
the Euclidean case that we know of is in [23] (the full range of interpolation is
not obtained in [44].)

1.3.3 Change of aperture

Under the doubling assumption, the change of aperture result can be proven
without assuming (NI) by means of the vector-valued method. The proof is a
combination of the techniques of [44] and [23].

Proposition 1.3.21. Suppose X is doubling. For α, β ∈ (0,∞) and p, q ∈
(0,∞), the tent space (quasi-)norms ||·||T p,q,α(X) and ||·||T p,q,β(X) are equivalent.

Proof. First suppose p, q ∈ (1,∞). Since X is doubling, we can replace our
definition of Aαq with the definition

Aαq (f)(x)q :=
¨

Γα(x)
|f(y, t)|q dµ(y)

V (y, t)
dt

t
;

using the notation of Section 1.3.1, this is the definition with a = y and b = 1.
Having made this change, the vector-valued approach to tent spaces (see Section
1.3.2) transforms as follows. The tent space T p,q,α(X) now embeds isometrically
into Lp(X;Lq1(X+)) via the operator Tα defined, as before, by

Tαf(x)(y, t) := f(y, t)1Γα(x)(y, t)

for f ∈ T p,q,α(X). The adjoint of Tα is the operator Πα, now defined by

(ΠαG)(y, t) := 1
V (y, t)

ˆ
B(y,αt)

G(z)(y, t) dµ(z)

for G ∈ Lp(X;Lq1(X+)). The composition Pα := TαΠα is then a bounded projec-
tion from Lp(X;Lq1(X+)) onto TαT p,q,α(X), and can be written in the form

PαG(x)(y, t) = 1Γα(x)(y, t)
V (y, t)

ˆ
B(y,αt)

G(z)(y, t) dµ(z).
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For f ∈ T p,q,α(X), we can easily compute

PβTαf(x)(y, t) = Tβf(x)(y, t)V (y,min(α, β)t)
V (y, t) . (1.13)

Without loss of generality, suppose β > α. Then we obviously have

||·||T p,q,α(X) .q,α,β,X ||·||T p,q,β(X)

by Remark 1.3.7. It remains to show that

||·||T p,q,β(X) .p,q,α,β,X ||·||T p,q,α(X) . (1.14)

From (1.13) and doubling, for f ∈ T p,q,α(X) we have that

Tβf(x)(y, t) .X,α PβTαf(x)(y, t),

and so we can write

||f ||T p,q,β(X) = ||Tβf ||Lp(X;Lq1(X+))

.X,α ||PβTαf ||Lp(X;Lq1(X+))

≤ ||Pβ||L(Lp(X;Lq1(X+))) ||Tαf ||Lp(X;Lq1(X+))

.p,q,β,X ||f ||T p,q,α(X)

since Pβ is a bounded operator on Lp(X;Lq1(X+)). This shows (1.14), and com-
pletes the proof for p, q ∈ (1,∞).

Now suppose that at least one of p and q is not in (1,∞), and suppose f ∈
T p,q,α(X) is a cylindrically supported simple function. Choose an integer M such
that both Mp and Mq are in (1,∞). Then there exists a cylindrically supported
simple function g with gM = f . We then have

||f ||1/MT p,q,α(X) =
∣∣∣∣∣∣gM ∣∣∣∣∣∣1/M

T p,q,α(X)

= ||g||TMp,Mq,α(X)

'p,q,α,β,X ||g||TMp,Mq,β(X)

= ||f ||1/MT p,q,β(X) ,

and so the result is true for cylindrically supported simple functions, with an
implicit constant which does not depend on the support of such a function. Since
the cylindrically supported simple functions are dense in T p,q,α(X), the proof is
complete.
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Remark 1.3.22. Written more precisely, with p, q ∈ (0,∞) and β < 1, the in-
equality (1.14) is of the form

||·||T p,q,1(X) .p,q,X sup
(y,t)∈X+

(
V (y, t)
V (y, βt)

)M
||·||T p,q,β(X) .

where M is such that Mp,Mq ∈ (1,∞).

1.3.4 Relations between A and C

Again, this proposition follows from the methods of [33].

Proposition 1.3.23. Suppose X satisfies (HL), and suppose 0 < q < p < ∞
and α > 0. Then ∣∣∣∣∣∣Cαq (f)

∣∣∣∣∣∣
Lp(X)

.p,q,X

∣∣∣∣∣∣Aαq (f)
∣∣∣∣∣∣
Lp(X)

.

Proof. Let B ⊂ X be a ball. Then by Fubini–Tonelli’s theorem, and using that
Sα(Tα(B)) = B,

1
µ(B)

¨
Tα(B)

|f(y, t)|q dµ(y) dt
t

= 1
µ(B)

¨
Tα(B)

|f(y, t)|q
V (y, αt)

ˆ
B(y,αt)

dµ(x) dµ(y) dt
t

= 1
µ(B)

ˆ
X

¨
Tα(B)

1B(y,αt)(x)|f(y, t)|q dµ(y)
V (y, αt)

dt

t
dµ(x)

= 1
µ(B)

ˆ
B

¨
Tα(B)

1B(x,αt)(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t
dµ(x)

≤ 1
µ(B)

ˆ
B

¨
X+

1B(x,αt)(y)|f(y, t)|q dµ(y)
V (y, αt)

dt

t
dµ(x)

= 1
µ(B)

ˆ
B

Aαq (f)(x)q dµ(x).

Now fix x ∈ X and take the supremum of both sides of this inequality over all
balls B containing x. We find that

Cαq (f)(x)q ≤M(Aαq (f)q)(x).

Since p/q > 1, we can apply (HL) to get∣∣∣∣∣∣Cαq (f)
∣∣∣∣∣∣
Lp(X)

≤
∣∣∣∣∣∣M(Aαq (f)q)1/q

∣∣∣∣∣∣
Lp(X)

=
∣∣∣∣∣∣M(Aαq (f)q)

∣∣∣∣∣∣1/q
Lp/q(X)

.p,q,X

∣∣∣∣∣∣Aαq (f)q
∣∣∣∣∣∣1/q
Lp/q(X)

=
∣∣∣∣∣∣Aαq (f)

∣∣∣∣∣∣
Lp(X)
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as desired.

Remark 1.3.24. If X is doubling, and if p, q ∈ (0,∞), then for α > 0 we also have
that ∣∣∣∣∣∣Aαq (f)

∣∣∣∣∣∣
Lp(X)

.p,q,X

∣∣∣∣∣∣Cαq (f)
∣∣∣∣∣∣
Lp(X)

.

This can be proven as in [33, §6], completely analogously to the proofs above.

1.4 Appendix: Assorted lemmas and notation

1.4.1 Tents, cones, and shadows

Lemma 1.4.1. Suppose A and B are subsets of X, with A open, and suppose
Tα(A) ⊂ Tα(B). Then A ⊂ B.

Proof. Suppose x ∈ A. Then dist(x,Ac) > 0 since A is open, and so dist(x,Ac) >
αt for some t > 0. Hence (x, t) ∈ Tα(A) ⊂ Tα(B), so that dist(x,Bc) > αt > 0.
Therefore x ∈ B.

Lemma 1.4.2. Let C ⊂ X+ be cylindrical, and suppose α > 0. Then Sα(C) is
bounded.

Proof. Write C ⊂ B(x, r)× (a, b) for some x ∈ X and r, a, b > 0. Then Sα(C) ⊂
Sα(B(x, r)× (a, b)), and one can easily show that

Sα(B(x, r)× (a, b)) ⊂ B(x, r + αb),

showing the boundedness of Sα(C).

Lemma 1.4.3. Let C ⊂ X+, and suppose α > 0. Then Tα(Sα(C)) is the minimal
α-tent containing C, in the sense that Tα(S) ⊃ C for some S ⊂ X implies that
Tα(Sα(C)) ⊂ Tα(S).

Proof. A straightforward set-theoretic manipulation shows that C is contained in
Tα(Sα(C)). We need to show that Sα(C) is minimal with respect to this property.

Suppose that S ⊂ X is such that C ⊂ Tα(S), and suppose (w, tw) is in
Tα(Sα(C)). With the aim of showing that dist(w, Sc) > αtw, suppose that y ∈ Sc.
Then Γα(y) ∩ Tα(S) = ∅, and so Γα(y) ∩ C = ∅ since Tα(S) contains C. Thus
y ∈ Sα(C)c, and so

d(w, y) ≥ dist(w, Sα(C)c) > αtw
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since (w, tw) ∈ Tα(Sα(C)). Taking an infimum over y ∈ Sc, we get that

dist(w, Sc) > αtw,

which says precisely that (w, tw) is in Tα(S). Therefore Tα(Sα(C)) ⊂ Tα(S) as
desired.

Lemma 1.4.4. For a cylindrical subset K ⊂ X+, define

β0(K) := inf
B⊂X
{µ(B) : Tα(B) ∩K 6= ∅} and

β1(K) := inf
B⊂X
{µ(B) : Tα(B) ⊃ K},

with both infima taken over the set of balls B in X. Then β1(K) is positive, and
if X is proper or doubling, then β0(K) is also positive.

Proof. We first prove that β0 := β0(K) is positive, assuming that X is proper or
doubling. Write

K ⊂ C := B(x0, r0)× [a0, b0]

for some x0 ∈ X and a0, b0, r0 > 0. If B is a ball such that Tα(B)∩K 6= ∅, then
we must have Tα(B) ∩ C 6= ∅, and so we can estimate

β0 ≥ inf
B⊂X
{µ(B) : Tα(B) ∩ C 6= ∅}.

Note that if B = B(c(B), r(B)) is a ball with c(B) ∈ B(x0, r0), then Tα(B)∩
C 6= ∅ if and only if r(B) ≥ αa0. Defining

I(x) := inf{V (x, r) : r > 0, Tα(B(x, r)) ∩ C 6= ∅}

for x ∈ X, we thus see that I(x) = V (x, αa0) when x ∈ B(x0, r0), and so I|B(x0,r0)
is lower semicontinuous as long as the volume function is lower semicontinuous.

Now suppose B = B(y, ρ) is any ball with Tα(B) ∩ C 6= ∅. Let (z, tz) be a
point in Tα(B) ∩ C. We claim that the ball

B̃ := B
(
z,

1
2 (ρ− d(z, y) + αtz)

)
is contained in B, centred in B(x0, r0), and is such that Tα(B̃) ∩ C 6= ∅. The
second fact is obvious: (z, tz) ∈ C implies z ∈ B(x0, r0). For the first fact, observe
that

B̃ ⊂ B(y, d(z, y) + (ρ− d(z, y) + αtz)/2)
= B(y, (ρ+ d(z, y) + αtz)/2)
⊂ B(y, (ρ+ (ρ− αtz) + αtz)/2)
= B(y, ρ),

36



since (z, tz) ∈ Tα(B) implies that d(z, y) < ρ − αtz. Finally, we have (z, tz) ∈
Tα(B̃): since c(B̃) = z, we just need to show that tz < r(B̃)/α. Indeed, we have

r(B̃)
α

= 1
2

(
ρ− d(z, y)

α
+ tz

)
,

and tz < (ρ− d(z, y))/α as above.
The previous paragraph shows that

inf
x∈X

I(x) ≥ inf
x∈B(x0,r0)

I(x),

and so we are reduced to showing that the right hand side of this inequality is
positive, since β0 ≥ infx∈X I(x).

If X is proper: Since B(x0, r0) is compact and I|B(x0,r0) is lower semicontinu-
ous, I|B(x0,r0) attains its infimum on B(x0, r0). That is,

inf
x∈B(x0,r0)

I(x) = min
x∈B(x0,r0)

Ix > 0, (1.15)

by positivity of the ball volume function.

If X is doubling: Since I(x) = V (x, αa0) when x ∈ B(x0, r0), we can write

inf
x∈B(x0,r0)

I(x) ≥ inf
x∈B(x0,r0)

V (x, ε),

where ε = min(αa0, 3r0). If x ∈ B(x0, r0), then B(x0, r0) ⊂ B(x, 2r0) ⊂
B(x, 3r0), and so since 3r0/ε ≥ 1,

V (x0, r0) ≤ V (x, 3r0)
= V (x, ε(3r0/ε))
.X V (x, ε).

Hence V (x, ε) &X V (x0, r0), and therefore

inf
x∈B(x0,r0)

V (x, ε) & V (x0, r0) > 0 (1.16)

as desired.

We now prove that β1 = β1(K) is positive. Recall from Lemma 1.4.3 that if
Tα(B) ⊃ K, then Tα(B) ⊃ Tα(Sα(K)). Since shadows are open, Lemma 1.4.1
tells us that B ⊃ Sα(K). Hence µ(B) ≥ µ(Sα(K)), and so

β1 ≥ µ(Sα(K)) > 0

by positivity of the ball volume function.10
10If Sα(K) is a ball, then β1(K) = µ(Sα(K)).
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Lemma 1.4.5. Let B be an open ball in X of radius r. Then for all x ∈ B, the
truncated cone Γαr (x) is contained in Tα((2α + 1)B).

Proof. Suppose (y, t) ∈ Γαr (x) and z ∈ ((2α + 1)B)c, so that d(y, x) < αt < αr

and d(c(B), z) ≥ (2α + 1)r. Then by the triangle inequality

d(y, z) ≥ d(c(B), z)− d(c(B), x)− d(x, y)
> (2α + 1)r − r − αr
= αr

> αt,

so that dist(y, ((2α + 1)B)c) > αt, which yields (y, t) ∈ Tα((2α + 1)B).

1.4.2 Measurability

We assume (X, d, µ) has the implicit assumptions from Section 1.2.

Lemma 1.4.6. Let α > 0, and suppose Φ is a non-negative measurable function
on X+. Then the function

g : x 7→
¨

Γα(x)
Φ(y, t) dµ(y) dt

t

is µ-measurable.

We present two proofs of this lemma: one uses an abstract measurability
result, while the other is elementary (and in fact stronger, proving that g is not
only measurable but lower semicontinuous).

First proof. By [67, Theorem 3.1], it suffices to show that the function

F (x, (y, t)) := 1B(y,αt)(x)Φ(y, t)

is measurable on X ×X+. For ε > 0, define

fε(x, (y, t)) := dist(x,B(y, αt))
dist(x,B(y, αt)) + dist(x,B(y, αt+ ε)c)

.

Then fε(x, (y, t)) is continuous in x, and converges pointwise to 1B(y,αt)(x) as
ε→ 0. Hence

F (x, (y, t)) = lim
ε→0

fε(x, (y, t))Φ(y, t) =: lim
ε→0

Fε(x, (y, t)),
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and therefore it suffices to show that each Fε(x, (y, t)) is measurable on X ×X+.
Since Fε is continuous in x and measurable in (y, t), Fε is measurable onX×X+,11

and the proof is complete.

Second proof. For all x ∈ X and ε > 0, define the vertically translated cone

Γαε (x) := {(y, t) ∈ X+ : (y, t− ε) ∈ Γα(x)} ⊂ Γα(x).

If y ∈ B(x, αε), then is it easy to show that Γαε (x) ⊂ Γα(y): indeed, if (z, t) ∈
Γαε (x), then d(z, x) < α(t− ε), and so

d(z, y) ≤ d(z, x) + d(x, y) < α(t− ε) + αε = αt.

For all x ∈ X and ε > 0, define

gε(x) :=
¨

Γαε (x)
Φ(y, t) dµ(y) dt

t
.

For each x ∈ X, as ε↘ 0, we have gε(x)↗ g(x) by monotone convergence. Fix
λ > 0, and suppose that g(x) > λ. Then there exists ε(x) such that gε(x)(x) > λ.
If y ∈ B(x, αε(x)), then by the previous paragraph we have

g(y) ≥ gε(x)(x) > λ.

Therefore g is lower semicontinuous, and thus measurable.

Lemma 1.4.7. Let f be a measurable function on X+, q ∈ (0,∞), and α > 0.
Then Cαq (f) is lower semicontinuous.

Proof. Let λ > 0, and suppose x ∈ X is such that Cαq (f)(x) > λ. Then there
exists a ball B 3 x such that

1
µ(B)

¨
Tα(B)

|f(y, t)|q dµ(y) dt
t
> λq.

Hence for any z ∈ B, we have Cαq (f)(z) > λ, and so the set {x ∈ X : Cαq (f)(x) >
λ} is open.

11See [41, Theorem 1], which tells us that Fε is Lusin measurable; this implies Borel measur-
ability on X ×X+.
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1.4.3 Interpolation

Here we fix some notation involving complex interpolation.
An interpolation pair is a pair (B0, B1) of complex Banach spaces which admit

embeddings into a single complex Hausdorff topological vector space. To such a
pair we can associate the Banach space B0 +B1, endowed with the norm

||x||B0+B1
:= inf{||x0||B0

+ ||x1||B1
: x0 ∈ B0, x1 ∈ B1, x = x0 + x1}.

We can then consider the space F(B0, B1) of functions f from the closed strip

S = {z ∈ C : 0 ≤ Re(z) ≤ 1}

into the Banach space B0 +B1, such that

• f is analytic on the interior of S and continuous on S,

• f(z) ∈ Bj whenever Re(z) = j (j ∈ {0, 1}), and

• the traces fj := f |Re z=j (j ∈ {0, 1}) are continuous maps into Bj which
vanish at infinity.

The space F(B0, B1) is a Banach space when endowed with the norm

||f ||F(B0,B1) := max
(

sup
Re z=0

||f(z)||B0
, sup

Re z=1
||f(z)||B1

)
.

We define the complex interpolation space [B0, B1]θ for θ ∈ [0, 1] to be the sub-
space of B0 +B1 defined by

[B0, B1]θ := {f(θ) : f ∈ F(B0, B1)}

endowed with the norm

||x||[B0,B1]θ := inf
f(θ)=x

||f ||F(B0,B1) .
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Chapter 2

Non-uniformly local tent spaces

This article is joint work with Mikko Kemppainen.

Abstract

We develop a theory of ‘non-uniformly local’ tent spaces on metric measure spaces.
As our main result, we give a remarkably simple proof of the atomic decomposi-
tion.

2.1 Introduction

The theory of global tent spaces on Euclidean space was first considered by Coif-
man, Meyer, and Stein [33], and has since become a central framework for un-
derstanding Hardy spaces defined by square functions. Upon replacing Euclidean
space with a doubling metric measure space, the theory is largely unchanged.
Details of this generalisation can be found in [3], although this was known to
harmonic analysts for some time.

Tent spaces on Riemannian manifolds with doubling volume measure were
used by Auscher, McIntosh, and Russ in [13], where a ‘first order approach’ to
Hardy spaces associated with the Laplacian −∆ (or more accurately, the corre-
sponding Hodge–Dirac operator) was investigated. A corresponding local tent
space theory, now on manifolds with exponentially locally doubling volume mea-
sure, was considered by Carbonaro, McIntosh, and Morris [30], with applications
to operators such as −∆ + a for a > 0. The locality arises from the ‘spectral
gap’ between 0 and σ(−∆ +a) ⊂ [a,∞) and means that the relevant information
of a function can be captured from small time diffusion, which in turn allows
one to exploit the locally doubling nature of the manifold under investigation.
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Hence the related tent spaces consist of functions of space-time variables (y, t)
with 0 < t < 1 instead of 0 < t <∞.

The motivation for non-uniformly local tent spaces comes from the setting
of Gaussian harmonic analysis, in which one considers the Ornstein–Uhlenbeck
operator L = −∆ + x · ∇ on Rn equipped with the usual Euclidean distance and
the Gaussian measure dγ(x) = (2π)−n/2e−|x|2/2 dx. Here σ(L) = {0, 1, 2, . . .}, but
despite the evident spectral gap, one cannot make use of a uniformly local tent
space because the rapidly decaying measure γ is non-doubling. This was remedied
by Maas, van Neerven, and Portal [64], who defined the ‘Gaussian tent spaces’
tp(γ) to consist of functions on the region D = {(y, t) ∈ Rn× (0,∞) : t < m(y)}.
Here m(y) = min(1, |y|−1) is the admissibility function of Mauceri and Meda [68],
who showed that γ is doubling on the family of ‘admissible balls’ B(x, t) with
t ≤ m(x). In [78], Portal then defined the ‘Gaussian Hardy space’ h1(γ) using
the conical square function

Su(x) =
(ˆ 2m(x)

0

ˆ
B(x,t)

|t∇e−t2Lu(y)|2 dγ(y)dt
t

)1/2

,

and showed that the Riesz transform ∇L−1/2 is bounded from h1(γ) to L1(γ).
This relied on the atomic decomposition on t1(γ), which was established in [64],
along with a square function estimate from [63]. The Gaussian Hardy space is
also known to interpolate with L2(γ), in the sense that [h1(γ), L2(γ)]θ = Lp(γ)
for 1/p = 1− θ/2 [77]. Note that dimension-independent boundedness of ∇L−1/2

on Lp(γ) for 1 < p <∞ is a classical result of Meyer [74].
Our long-term aim is to generalise this theory to the setting where, given an

appropriate ‘potential function’ φ on a Riemannian manifold X (or some more
general space) with volume measure µ, one considers the Witten Laplacian L =
−∆ +∇φ · ∇ equipped with the geodesic distance and the measure dγ = e−φdµ.
An admissibility function can then be defined by m(x) = min(1, |∇φ(x)|−1), with
a suitable interpretation of∇ if φ is not differentiable, and the setting of Gaussian
harmonic analysis is recovered by taking X = Rn and φ(x) = n

2 log(2π) + |x|2
2 .

The Riesz transform associated with the Witten Laplacian has been studied for
instance by Bakry in [20], where Lp(γ) boundedness for 1 < p < ∞ is proven
under a φ-related curvature assumption.

In this article we define and study the corresponding local tent spaces tp,q(γ).
Our main result is the atomic decomposition Theorem 2.4.5. This allows us to
identify the dual of t1,q(γ) with the local tent space t∞,q′(γ), and to show that the
local tent spaces form a complex interpolation scale. In Appendix 2.6 we prove a
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‘cone covering lemma’ for non-negatively curved Riemannian manifolds. It gives
a stronger version of Lemma 2.4.4 that is applicable also in the vector-valued
theory of tent spaces (see [59, 60]).

A different approach to Gaussian Hardy spaces was introduced in [68], where
the atomic Hardy space H1(γ) was introduced. This theory has also been ex-
tended to certain metric measure spaces (see [28, 29]). While many interesting
singular integral operators, such as imaginary powers of the Ornstein–Uhlenbeck
operator, have been shown to act boundedly from H1(γ) to L1(γ) (see [68]), it
should be noted that this is not the case for the Riesz transform (see [69]). This
marks the crucial difference between the atomic Hardy space H1(γ) and h1(γ).
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2.2 Weighted measures and admissible balls

We begin by formulating the abstract framework in which we develop our theory.
Let (X, d, µ) be a metric measure space: that is, a metric space (X, d) equipped
with a Borel measure µ. We assume that every ball B ⊂ X comes with a given
center cB and a radius rB > 0, and that the volume µ(B) is finite and nonzero.
Furthermore, we assume that the metric space (X, d) is geometrically doubling:
that is, we assume that there exists a natural number N ≥ 1 such that for every
ball B ⊂ X of radius rB, there exist at most N mutually disjoint balls of radius
rB/2 contained in B.

Given a measurable real-valued function φ on X, we consider the weighted
measure

dγ(x) := e−φ(x) dµ(x).

Furthermore, we fix a function m : X → (0,∞), which we call an admissibility
function. For every α > 0, this defines the family of admissible balls

Bα := {B ⊂ X : 0 < rB ≤ αm(cB)}.
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These objects are required to satisfy the following doubling condition:

(A) For every α > 0, γ is doubling on Bα, in the sense that there exists a constant
Cα ≥ 1 such that for all α-admissible balls B ∈ Bα,

γ(2B) ≤ Cαγ(B).

Here and in what follows, we write λB = B(cB, λrB) for the expansion of a ball
B by λ ≥ 1.

Remark 2.2.1. Condition (A) implies that for every α > 0 and every λ ≥ 1, there
exists a constant Cα,λ ≥ 1 such that for all α-admissible balls B ∈ Bα,

γ(λB) ≤ Cα,λγ(B). (2.1)

We now describe two classes of examples of φ and m.

Example 2.2.2 (Distance functions). Assume that the underlying measure µ is
doubling, let Ω ⊂ X be a measurable set of ‘origins’, and let a, a′ > 0. Define φ
by

φ(x) := a+ a′ dist(x,Ω)2.

An admissibility function can then be defined by

m(x) = min
(

1, 1
dist(x,Ω)

)
.

Taking X to be Rn (equipped with the usual Euclidean distance and Lebesgue
measure), Ω = {0}, and (a, a′) = (n log(2π)/2, 1/2), we recover the setting of
Gaussian harmonic analysis.

Claim 2.2.3. Condition (A) is satisfied with Cα = Dµe
a′α(5α+6), where Dµ is the

doubling constant of the underlying measure µ.

Proof. Since µ is doubling, it suffices to show that for every α-admissible ball
B ∈ Bα we have e

−φ(x) ≤ C ′αe
−φ(cB) when x ∈ 2B, and

e−φ(x) ≥ C ′′αe
−φ(cB) when x ∈ B.

(2.2)

Indeed, this would imply that

γ(2B) =
ˆ

2B
e−φ(x) dµ(x) ≤ C ′αµ(2B)e−φ(cB)
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and
γ(B) =

ˆ
B

e−φ(x) dµ(x) ≥ C ′′αµ(B)e−φ(cB),

so that
γ(2B)
γ(B) ≤

C ′α
C ′′α

µ(2B)
µ(B) ≤ Cα := Dµ

C ′α
C ′′α

.

To see that the first inequality in (2.2) holds with C ′α = e4a′α(α+1), observe
that if x ∈ 2B, then

dist(cB,Ω) ≤ 2αm(x) + dist(x,Ω).

Indeed, if dist(cB,Ω) ≥ dist(x,Ω), then m(cB) ≤ m(x), and so

dist(cB,Ω) ≤ d(cB, x)+dist(x,Ω) ≤ 2αm(cB)+dist(x,Ω) ≤ 2αm(x)+dist(x,Ω).

Consequently we have

dist(cB,Ω)2 ≤ 4αm(x)2 +4αm(x) dist(x,Ω)+dist(x,Ω)2 ≤ 4α2 +4α+dist(x,Ω)2,

and so
e−a

′ dist(x,Ω)2 ≤ e4a′α(α+1)e−a
′ dist(cB ,Ω)2

.

Similarly, the second inequality in (2.2) with C ′′α = e−a
′α(α+2) follows after

noting that if x ∈ B, then

dist(x,Ω) ≤ d(x, cB) + dist(cB,Ω) ≤ αm(cB) + dist(cB,Ω).

Thus
dist(x,Ω)2 ≤ α2 + 2α + dist(cB,Ω)2

and
e−a

′ dist(x,Ω)2 ≥ e−a
′α(α+2)e−a

′ dist(cB ,Ω)2
.

Putting these estimates together, we have

Cα = Dµe
4a′α(α+1)ea

′α(α+2) = Dµe
a′α(5α+6)

as claimed.

Example 2.2.4 (C2 potentials). In this example, let (X, g) be a connected
Riemannian manifold (C2 is sufficient) with doubling volume measure, let φ ∈
C2(X), and assume that the following condition is satisfied:
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(B) there exists a constant M > 0 such that for every unit speed geodesic
ρ : [0, `]→ X, we have

|(φ ◦ ρ)′′(t)| ≤M |(φ ◦ ρ)′(t)| (2.3)

for all t ∈ (0, `) such that |(φ ◦ ρ)′(t)| > 1.

Alternatively, we can assume the following inequivalent condition, which is neater
but generally harder to verify:

(H) there exists a constant M > 0 such that

||Hessφ(x)|| ≤M |∇φ(x)| (2.4)

for all x ∈ X such that |∇φ(x)| > 1.

Note that (B) can be interpreted as a one-dimensional version of (H); indeed,
when X is one-dimensional, both conditions are equivalent.

If either of the above conditions are satisfied, we define an admissibility func-
tion by

m(x) := min
(

1, 1
|∇φ(x)|

)
for x ∈ X, with m(x) := 1 when |∇φ(x)| = 0.

Claim 2.2.5. If d(x, y) ≤ α then m(x) ≤ eMαm(y).

Proof. Here we assume condition (H); the proof under assumption (B) requires
only a simple modification.

Given ε > 0, we first take a continuous arclength-parametrised path

ρ : [0, d(x, y) + ε]→ X

connecting x to y (we may take ε = 0 when X is complete, and the argument
is slightly simpler in this case). Since φ is twice continuously differentiable, the
function mρ := m ◦ ρ is absolutely continuous on [0, d(x, y) + ε], and hence
differentiable almost everywhere on this interval. We compute the derivative
of mρ(t) whenever mρ is differentiable. If t is such that |∇φ(ρ(t))| ≤ 1 in a
neighbourhood of t, then ∂tmρ(t) = 0. If t is such that |∇φ(ρ(t))| > 1 in a
neighbourhood of t, then

∂tmρ(t) = ∂t(|∇φ(ρ(t))|−1) = −∂t|∇φ(ρ(t))|
|∇φ(ρ(t))|2 .
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Using the estimate
|∂t|∇φ(ρ(t))|| ≤ ||Hessφ(ρ(t))||

along with assumption (H), we find that

|∂tmρ(t)| ≤
||Hessφ(ρ(t))||
|∇φ(ρ(t))|2 ≤ M

|∇φ(ρ(t))|

for all t such that mρ(t) is differentiable.
Since mρ(t) is differentiable almost everywhere, we have

| logmρ(d(x, y))− logmρ(0)| ≤ sup
0<t<d(x,y)+ε

|∂t logmρ(t)|d(x, y)

≤ sup
0<t<d(x,y)+ε

|∂t logmρ(t)|α,

where the supremum is taken over all t ∈ (0, d(x, y) + ε) such that mρ(t) is
differentiable. Note that

|∂t logmρ(t)| =
|∂tmρ(t)|
|mρ(t)|

,

and so by the estimate above we have that

|∂t logmρ(t)| ≤
M

|∇φ(ρ(t))| |∇φ(ρ(t))| = M.

Therefore
| logmρ(d(x, y) + ε)− logmρ(0)| ≤Mα,

and so
e| log(m(y)/m(x))| ≤ eM(α+ε) =: c′αeMε.

This holds for every ε > 0, so by taking the limit of both sides as ε→ 0 we obtain

e| log(m(y)/m(x))| ≤ c′α. (2.5)

Without loss of generality, we can suppose that m(x) ≥ m(y). Then

| log(m(y)/m(x))| = log(m(x)/m(y)),

and (2.5) implies that
m(x)
m(y) ≤ c′α,

which completes the proof.

Claim 2.2.6. Condition (A) is satisfied, with Cα = Dµe
3αeMα.
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Proof. As in the previous example, it suffices to show that for every B ∈ Bα we
have e

−φ(x) ≤ C ′αe
−φ(cB), when x ∈ 2B,

e−φ(x) ≥ C ′′αe
−φ(cB), when x ∈ B.

(2.6)

This is implied (with C ′α = eαc
′
α and C ′′α = e−2αc′α) by the estimate

|φ(x)− φ(cB)| ≤ λαc′α ∀x ∈ λB,

for all λ ≥ 1 and x ∈ λB, which we now show. If x ∈ λB, then we have

|φ(x)− φ(cB)| ≤ sup
y∈λB
|∇φ(y)|d(x, cB).

Since B is α-admissible, for all x, y ∈ λB Claim 2.2.5 yields

d(x, cB) ≤ λrB ≤ λαm(cB) ≤ λαc′αm(y) ≤ λαc′α|∇φ(y)|−1,

and so |φ(x)− φ(cB)| ≤ λαc′α. As in the previous example, we then have

Cα = Dµ
C ′α
C ′′α

= Dµe
3αc′α .

Using c′α = eMα (from Claim 2.2.5) yields the result.

For a concrete subexample, let (X, d, µ) be the Euclidean space Rn with the
usual Euclidean distance and Lebesgue measure, and let φ ∈ R[x1, . . . , xn] be
a polynomial. Condition (B) is easily verified, although condition (H) may not
hold when n ≥ 2. Taking φ(x) = n log(2π)

2 + 1
2
∑n
i=1 x

2
i , we again recover the

setting of Gaussian harmonic analysis. However, in this case the constants c′α
and Cα have significantly worse α-dependence than the constants we found in
the previous example. This is because conditions (B) and (H) are less restrictive
than assuming φ is given in terms of a distance function.

Remark 2.2.7. The utility of an admissibility function is eventually judged by its
applicability to the local Hardy space theory. More precisely, one needs to obtain
suitable ‘error estimates’ in the spirit of [78, Section 5]. The only known example
of such at the time of writing is the setting of Rn with φ(x) = n

2 log π + |x|2 and
m(x) = min(1, |x|−1).
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2.3 Local tent spaces: the reflexive range

We now introduce the main topic of the paper — the non-uniformly local tent
spaces. Let φ and m be given and satisfy (A) from Section 2.2. Denote the
resulting weighted measure by γ.

Definition 2.3.1. Let 0 < p, q < ∞ and α > 0. The local tent space tp,qα (γ) is
the set of all measurable functions f defined on the admissible region

D = {(y, t) ∈ X × (0,∞) : t < m(y)}

such that the functional

Aαq f(x) =
(¨

Γα(x)
|f(y, t)|q dγ(y)

γ(B(y, t))
dt

t

)1/q

satisfies
‖f‖tp,qα (γ) := ‖Aαq f‖Lp(γ) <∞.

Here Γα(x) = {(y, t) ∈ D : d(x, y) < αt} is the admissible cone of aperture α at
x ∈ X.

It is clear that ||·||tp,qα (γ) is a norm on tp,q(γ) when p, q ∈ [1,∞), and a quasi-
norm when p < 1 or q < 1. Following the argument of [3, Proposition 3.4] with
doubling replaced by local doubling, we can show that tp,qα (γ) is complete in this
(quasi-)norm.

Remark 2.3.2. The choice φ = 0 and m = ∞ recovers the setting of global tent
spaces [3], whereas φ = 0 and m = 1 gives the setting of uniformly local tent
spaces by Carbonaro, McIntosh and Morris [30].

For 1 < p, q < ∞, the properties of tp,qα (γ) can be studied, as in [44], by
embedding the space into an Lp-space of Lq-valued functions. More precisely, let
us write Lq(D) for the space of q-integrable functions on D with respect to the
measure dγ(y) dt

tγ(B(y,t)) , so that

Jα : tp,qα (γ) ↪→ Lp(γ;Lq(D)), Jαf(x) = 1Γα(x)f

defines an isometry. We will show that Jα embeds tp,qα (γ) as a complemented
subspace of Lp(γ;Lq(D)), with

NαU(x; y, t) = 1B(y,αt)(x)
ˆ
B(y,αt)

U(z; y, t) dγ(z)
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defining a bounded projection of Lp(γ;Lq(D)) onto the image of tp,qα (γ), where
U ∈ Lp(γ;Lq(D)), x ∈ X, and (y, t) ∈ D.

To see that Nα is bounded, we first observe that

|NαU(x; y, t)| ≤ 1B(y,αt)(x)
ˆ
B(y,αt)

|U(z; y, t)| dγ(z)

≤ sup
B3x
B∈Bα

ˆ
B

|U(z; y, t)| dγ(z)

=MαU(x; y, t),

whereMα is the Lq(Σ)-valued α-local maximal function from Appendix 2.5, with
Σ = (D, dγ(y) dt

tγ(B(y,t))). Consequently,

‖NαU‖Lp(γ;Lq(D)) ≤ ‖MαU‖Lp(γ;Lq(D)) .p,q cXCα,cX‖U‖Lp(γ;L2(D)),

(see Appendix 2.5).
An immediate consequence of this vector-valued approach is the following

theorem, detailing the behaviour of the local tent spaces in the reflexive range.

Theorem 2.3.3. Let 1 < p, q <∞. We have

• (change of aperture) ‖f‖tp,qα (γ) hp,q,α,β ‖f‖tp,q
β

(γ) for 0 < β < α <∞,

• (duality) tp,qα (γ)∗ = tp
′,q′
α (γ), realised by the duality pairing

〈f, g〉 =
¨
D

f(y, t)g(y, t) dγ(y)dt
t
,

• (complex interpolation) [tp0,q0
α (γ), tp1,q1

α (γ)]θ = tp,qα (γ) when 1 < p0 ≤ p1 <∞
and 1 < q0 ≤ q1 <∞, with 1/p = (1−θ)/p0 +θ/p1, 1/q = (1−θ)/q0 +θ/q1.

Proof. For our claim on change of aperture, we follow [44] and begin by noting
that for suitable f we have

NαJβf(x; y, t) = γ(B(y, βt))
γ(B(y, αt))Jαf(x; y, t).

Then

‖f‖tp,qα (γ) = ‖Jαf‖Lp(γ;Lq(D)) = γ(B(y, αt))
γ(B(y, βt))‖NαJβf‖Lp(γ;Lq(D))

.p,q Cβ,α/βCα,cX‖Jβf‖Lp(γ;Lq(D))

= Cβ,α/βCα,cX‖f‖tp,qβ (γ),
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where the constants are from Remark 2.2.1.
Now tp,qα (γ) is embedded in Lp(γ;Lq(D)) as the range of the projection Nα,

whose dual is isomorphic to the range of N∗α on Lp(γ;Lq(D))∗ = Lp
′(γ;Lq′(D)),

which, in turn, is isometrically isomorphic to tp
′,q′
α (γ) (because N∗α = Nα). The

duality is realised as

〈f, g〉 = 〈Jαf, Jαg〉

=
ˆ
X

〈1Γα(x)f,1Γα(x)g〉 dγ(x)

=
ˆ
X

¨
Γα(x)

f(y, t)g(y, t) dγ(y)
γ(B(y, t))

dt

t
dγ(x)

=
¨
D

f(y, t)g(y, t) dγ(y)dt
t
.

For 1 < p0 ≤ p1 < ∞ and 1 < q0 ≤ q1 < ∞ the interpolation of tent spaces
follows, by the standard result on interpolation of complemented subspaces [89,
Section 1.17], from the fact that

[Lp0(γ;Lq0(D)), Lp1(γ;Lq1(D))]θ = Lp(γ;Lq(D)).

Remark 2.3.4. The dependence on α in the aperture change constant C1,αCα,cX
(between tp,qα (γ) and tp,q1 (γ)) is not optimal in general. For instance, on (Rn, dx),
the optimal dependence is αn/min(p,2) (see [6]), while C1,αCα,cX h αn. Note how-
ever, that on (Rn, γ) we have C1,αCα,cX . ecα

2 for some constant c. We return to
this in Section 2.4.

The change of aperture and interpolation results extend to 1 ≤ p, q < ∞ by
a convex reduction due to Bernal ([23], see also [3]).

Corollary 2.3.5. Let 1 ≤ q <∞. We have

• (change of aperture) ‖f‖t1,qα (γ) hq,α,β ‖f‖t1,q
β

(γ) for 0 < β < α <∞,

• (complex interpolation) [tp0,q0
α (γ), tp1,q1

α (γ)]θ = tp,qα (γ) when 1 ≤ p0 ≤ p1 <∞
and 1 < q0 ≤ q1 <∞, with 1/p = (1−θ)/p0 +θ/p1, 1/q = (1−θ)/q0 +θ/q1.

2.4 Endpoints: t1,q and t∞,q

In this section, under the assumption that the space X is complete, we study
the endpoints of the local tent space scale: the spaces t1,qα (γ) and t∞,qα (γ) (with
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1 ≤ q < ∞). In particular, employing Corollary 2.3.5 we prove, following the
argument in [59], that elements of t1,qα (γ) can be decomposed into ‘atoms’. From
this we deduce duality, interpolation, and (quantified) change of aperture results
for the full local tent space scale tp,qα (γ) (1 ≤ p ≤ ∞, 1 ≤ q < ∞). We write
t1,q := t1,q1 for notational simplicity. We do not consider q = ∞. As in [33], this
requires additional continuity and convergence assumptions.

2.4.1 Atomic decomposition

Fix (X, d, µ), φ, and m as in the previous section. The admissible tent T (O) over
an open set O ⊂ X is given by

T (O) := D \ Γ(Oc),

where Γ(Oc) := ∪x∈OcΓ(x).

Definition 2.4.1. Fix α > 0 and q ≥ 1. A function a on D is called an α-t1,q-
atom (or more succinctly, a α-atom) if there exists an α-admissible ball B ∈ Bα
such that supp a ⊂ T (B) and

¨
T (B)
|a(y, t)|q dγ(y)dt

t
≤ 1
γ(B)q−1 .

Observe that for such a function a,

‖a‖t1,q(γ) =
ˆ
B

Aqa(x)q dγ(x) ≤ γ(B)
q−1
q

(ˆ
B

Aqa(x)q dγ(x)
)1/q

. 1.

Furthermore, if (ak)k∈N is a sequence of α-t1,q-atoms for some α > 0, then the
series f = ∑

k λkak converges in t1,q(γ) when ∑k |λk| <∞. The atomic tent space
t1,qat (γ) consisting of such functions f becomes a Banach space when normed by

‖f‖t1,qat (γ) = inf
{∑

k

|λk| : f =
∑
k

λkak

}
.

Lemma 2.4.2. Suppose that E ⊂ X is a bounded open set. Then there exists a
countable sequence of disjoint admissible balls Bj ⊂ E such that

T (E) ⊂
⋃
j≥1

T (5Bj).

Proof. Let δ1 = sup{rB : B ⊂ E admissible} and begin by choosing an admissible
ball B1 ⊂ E with radius r1 > δ1/2. Proceeding inductively we put

δk+1 = sup{rB : B ⊂ E admissible, B ∩Bj = ∅, j = 1, . . . , k}
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and choose (if possible) an admissible ball Bk+1 ⊂ E with radius rk+1 > δk+1/2
disjoint from B1, . . . , Bk. Given a (y, t) ∈ T (E) we show that B(y, t) ⊂ 5Bj for
some j. It is possible to pick the first index j for which B(y, t)∩Bj is nonempty.
Indeed, if on the contrary B(y, t) was disjoint from every Bj, then, B(y, t) being
admissible and contained in E, we would have t ≥ δj for all j which under the
assumption that (X, d) is geometrically doubling contradicts the boundedness of
E. By construction, we have t ≤ δj ≤ 2rj and so B(y, t) ⊂ 5Bj, as required.

Remark 2.4.3. The above lemma is a stronger version of a ‘local Vitali covering
lemma’, which is otherwise identical but claims only that E ⊂ ⋃j≥1 5Bj without
reference to tents (see also Remark 2.5.2).

The following lemma regarding pointwise estimates for A-functionals, which
appears implicitly in [33, Theorem 4’], lies at the heart of our proof of the atomic
decomposition. This is the only point at which we seem to need completeness;
we suspect that this assumption can be removed or at least weakened.

Lemma 2.4.4. Suppose X is complete, let q ≥ 1 and let f be a measurable
function in D. Let λ > 0 and write E = {x ∈ X : A3

qf(x) > λ}. Then
Aq(f1D\T (E))(x) ≤ λ for all x ∈ X.

Proof. If x 6∈ E, then Aq(f1D\T (E))(x) ≤ A3
qf(x) ≤ λ.

If x ∈ E, then by completeness ofX we can choose a point x0 ∈ X\E such that
d(x, x0) = d(x,X\E). We show that Γ(x)\T (E) ⊂ Γ3(x0): let (y, t) ∈ Γ(x)\T (E)
so that d(x, y) < t and B(y, t) 6⊂ E. Now B(y, t) ⊂ B(x, 2t), which means
that B(x, 2t) 6⊂ E and so x0 ∈ B(x, 2t). Moreover B(x, 2t) ⊂ B(y, 3t) so that
(y, t) ∈ Γ3(x0). Therefore Aq(f1D\T (E))(x) ≤ A3

qf(x0) ≤ λ.

Theorem 2.4.5. Suppose X is complete, and let q ≥ 1. For every f ∈ t1,q(γ),
there exist 5-t1,q-atoms ak and scalars λk such that

f =
∑
k

λkak, (2.7)

with ∑
k

|λk| ' ||f ||t1,q(γ) .

We call the series (2.7) an atomic decomposition of f .

Proof. We first derive atomic decompositions for the dense class of boundedly-
supported functions in t1,q(γ), and then argue by completeness of t1,qat (γ). Given
a function f in t1,q(γ) with bounded support, we consider the bounded open sets

Ek = {x ∈ X : A3
qf(x) > 2k}
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for each integer k. Applying Lemma 2.4.2 to these sets provides us with disjoint
balls Bj

k ⊂ Ek such that
T (Ek) ⊂

⋃
j≥1

T (5Bj
k).

In addition, we take a collection of functions χjk (cf. [59, Theorem 11]) satisfying

0 ≤ χjk ≤ 1,
∑
j≥1

χjk = 1 on T (Ek), and suppχjk ⊂ T (5Bj
k).

Writing Ak := T (Ek) \ T (Ek+1), we can decompose f as

f =
∑
k∈Z

1Akf =
∑
k∈Z

∑
j≥1

χjk1Akf =
∑
k∈Z

∑
j≥1

λjka
j
k,

where

λjk = γ(5Bj
k)1/q′

ˆ
5Bj

k

Aq(f1Ak)(x)q dγ(x)
1/q

.

Observe that ajk = χjk1Akf/λ
j
k is a 5-atom supported in T (5Bj

k).
What remains is to control the sum of the scalars λjk. By Lemma 2.4.4, we

have
Aq (f1Ak) (x) ≤ Aq

(
f1D\T (Ek+1)

)
(x) ≤ 2k+1

for all x ∈ X, and so
λjk ≤ γ(5Bj

k)2k+1.

Consequently,

∑
k∈Z

∑
j≥1

λjk ≤
∑
k∈Z

2k+1 ∑
j≥1

γ(5Bj
k) .

∑
k∈Z

2k+1γ(Ek) . ‖A3
qf‖L1(γ) . ‖f‖t1,q(γ),

where the last step follows by Corollary 2.3.5.
We have thus shown that ‖f‖t1,qat (γ) h ‖f‖t1,q(γ) for boundedly supported f in

t1,q(γ). Since the class of such functions is dense in t1,q(γ), the completeness of
t1,qat (γ) guarantees that every f ∈ t1,q(γ) has an atomic decomposition.

Remark 2.4.6. Maas, van Neerven and Portal established the above result in the
setting of Gaussian Rn by a different method, which relies on Gaussian Whitney
decompositions [64, Theorem 3.4]. In addition, they showed that decompositions
into α-atoms exist for every α > 1 [64, Lemma 3.6]. Such a result may not hold
in this level of generality due to the lack of geometric information.
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2.4.2 Duality, interpolation and change of aperture

We present three corollaries of the atomic decomposition theorem, which holds
when X is complete.

The dual of t1,q(γ) can be identified with the space t∞,q′(γ), consisting of those
functions g on D for which

‖g‖t∞,q′ (γ) = sup
B∈B5

(
1

γ(B)

¨
T (B)
|g(y, t)|q′ dγ(y)dt

t

)1/q′

is finite. Note that we take a supremum over 5-admissible balls, reflecting the
fact that we have atomic decompositions of elements of t1,q(γ) into 5-atoms. For
the reader’s convenience, we present the standard proof, following [33, Theorem
1 (b)].

Corollary 2.4.7. Suppose X is complete, and let q ≥ 1. Then the pairing

〈f, g〉 =
¨
D

f(y, t)g(y, t) dγ(y)dt
t
, f ∈ t1,q(γ), g ∈ t∞,q

′(γ), (2.8)

realises t∞,q′(γ) as the dual of t1,q(γ).

Proof. To see that (2.8) defines a bounded linear functional on t1,q(γ) for every
g ∈ t∞,q

′(γ), it suffices (by Theorem 2.4.5) to test the pairing on atoms. For any
atom a associated with a ball B ∈ B5 we have

|〈a, g〉| ≤
¨
T (B)
|ag| dγ dt

t

≤
(¨

T (B)
|a|q dγ dt

t

)1/q (¨
T (B)
|g|q′ dγ dt

t

)1/q′

≤ ‖g‖t∞,q′ (γ).

To show that every functional Λ ∈ t1,q
′(γ)∗ arises in this way, we first note

that each f ∈ Lq(T (B)), with B ∈ B5, satisfies

‖f‖t1,q(γ) ≤ γ(B)1/q′‖f‖Lq(T (B))

(we equip the space T (B) with the product measure dγ(y)dt/t). Hence Λ restricts
to a bounded linear functional on Lq(T (B)), and is thus given by

Λf =
¨
T (B)

fgB dγ
dt

t
, f ∈ Lq(T (B)),
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for some gB ∈ Lq
′(T (B)), with the estimate

‖gB‖Lq′ (T (B)) ≤ γ(B)1/q′‖Λ‖t1,q′ (γ)∗ .

A single function g on D can then be obtained from the family (gB)B∈B5 in a
well-defined manner, since for any two balls B,B′ ∈ B5, the functions gB and gB′
agree on T (B) ∩ T (B′). It remains to be checked that ‖g‖t∞,q′ (γ) = ‖Λ‖t1(γ)∗ . On
the one hand, for any B ∈ B5 we have(¨

T (B)
|g|q′ dγ dt

t

)1/q′

= ‖gB‖Lq′ (T (B)) ≤ γ(B)1/q′‖Λ‖t1,q′ (γ)∗ .

On the other hand, due to Theorem 2.4.5, ‖Λ‖t1,q(γ)∗ is achieved (up to a constant)
by testing against all atoms, and so the proof is completed after checking that

|Λa| ≤
¨
T (B)
|ga| dγ dt

t

≤
(¨

T (B)
|g|q′ dγ dt

t

)1/q′ (¨
T (B)
|a|q dγ dt

t

)1/q

≤ γ(B)1/q′ ||g||t∞,q′ (X,γ) γ(B)−1/q′

= ||g||t∞,q′ (γ) ,

Corollary 2.4.8. Suppose X is complete. For 1 ≤ p0 ≤ p1 ≤ ∞ (excluding the
case p0 = p1 = ∞) and 1 ≤ q0 ≤ q1 < ∞, we have [tp0,q0(γ), tp1,q1(γ)]θ = tp,q(γ),
when 1/p = (1− θ)/p0 + θ/p1, 1/q = (1− θ)/q0 + θ/q1, and 0 ≤ θ ≤ 1.

Proof. This follows directly from Theorem 2.3.3 and Corollary 2.4.7, by convex
reduction and reiteration (see Remark 2.3.4).

Corollary 2.4.9. Let q ≥ 1. For all 1 ≤ p ≤ q and α ≥ 1 we have

‖f‖tp,qα (γ) . C
1/q
1,αC

1/p−1/q
5,α ‖f‖tp,q(γ).

Proof. In order to argue by interpolation, consider first the case p = q:

‖f‖qtq,qα (γ) =
ˆ
X

¨
Γα(x)

|f(y, t)|q dγ(y)
γ(B(y, t))

dt

t
dγ(x)

=
ˆ
X

ˆ ∞
0
|f(y, t)|q1(0,m(y))(t)

γ(B(y, αt))
γ(B(y, t))

dt

t
dγ(y)

≤ C1,α

¨
D

|f(y, t)|q dγ(y)dt
t

= C1,α‖f‖qtq,q(γ).
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For p = 1 we make use of the atomic decomposition. If a is a 5-atom associated
with B ∈ B5, then, since Γα(x) ∩ T (B) is non-empty exactly when x ∈ αB, we
have

‖a‖t1,qα (γ) ≤ γ(αB)1/q′‖a‖tq,qα (γ)

≤ C
1/q
1,α γ(αB)1/q′‖a‖tq,q(γ)

≤ C
1/q
1,α

(
γ(αB)
γ(B)

)1/q′

≤ C
1/q
1,αC

1−1/q
5,α .

Thus ‖f‖t1,qα (γ) ≤ C
1/q
1,αC

1−1/q
5,α ‖f‖t1,q(γ) for all f ∈ t1,q(γ), and the result then

follows by interpolation.

Remark 2.4.10. Note that on (Rn, dx) this gives the optimal dependence on α

for 1 ≤ p ≤ 2, which we could not obtain from the vector-valued approach,
since C

1/2
1,αC

1/p−1/2
5,α = αn/p (see Remark 2.3.4). On Gaussian Rn this merely

extends the aperture change to t1(γ) with the constant ecα2 , the improvement
from interpolation being immaterial.

2.5 Appendix 1: Local maximal functions

Here we present a brief justification of the boundedness of the maximal functions
used above and in Appendix 2.6. We use dyadic methods, particularly the exis-
tence of finitely many ‘adjacent’ dyadic systems, combined with some methods
from Martingale theory. At the end of this section we indicate another approach,
which is more elementary but does not adapt well to vector-valued contexts.

By a dyadic system on a measure space (X, γ) we mean a countable collection
D = {Dk}k∈Z, where each Dk is a partition of X into measurable sets of finite
nonzero measure, such that the containment relations

Q ∈ Dk, R ∈ Dl, l ≥ k =⇒ R ⊂ Q or Q ∩R = ∅

hold. The elements of Dk are called dyadic cubes (of generation k).
Associated to each dyadic system D is a dyadic maximal function, defined by

MDu(x) = sup
Q3x
Q∈D

ˆ
Q

|u| dγ
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for all u ∈ L1
loc(γ). Since MD coincides with the martingale maximal function

for the (increasing) filtration (Fk)k∈Z when each Fk is the σ-algebra generated by
Dk, it follows that MD satisfies a weak type (1,1) inequality

γ({x ∈ X : MDu(x) > λ}) ≤ 1
λ
‖u‖L1(γ) (2.9)

for all λ > 0 (see for instance [91, Theorem 14.6] or [86, Chapter IV, Section 1]).
Now suppose that (X, d) is a geometrically doubling metric space. Hytönen

and Kairema showed in [52] (see also [72]) the existence of a finite collection of
adjacent dyadic systems.

Theorem 2.5.1. There exists a finite collection {Di}Ni=1 of dyadic systems on X,
with N bounded by a constant depending only on the geometric doubling constant
of (X, d), such that every open ball B ⊂ X is contained in a dyadic cube QB from
one of the dyadic systems, with diam(QB) ≤ cX diam(B).

Now let (X, d, µ), γ, and m be as in Section 2.2, and let α > 0. Combining
the theorem above with the weak type (1,1) estimate for the dyadic maximal
function yields a corresponding weak type (1,1) estimate for the α-local maximal
operator Mα.

Indeed, for each α-admissible ball B ∈ Bα we have that B ⊂ QB for some
dyadic cube QB that satisfies QB ⊂ cXB, and so

1B(x)
ˆ
B

|u| dγ ≤ 1QB(x)γ(QB)
γ(B)

ˆ
QB

|u| dγ

≤ 1QB(x)γ(cXB)
γ(B)

ˆ
QB

|u| dγ

≤ 1QB(x)Cα,cX
ˆ
QB

|u| dγ.

Here Cα,cX is the doubling constant from Remark 2.2.1. Summing over finitely
many dyadic systems, we find that

Mαu(x) ≤ Cα,cX
∑
D
MDu(x),

and using the estimate (2.9) yields

γ({x ∈ X : Mαu(x) > λ}) . Cα,cX ||u||L1(γ)

for all λ > 0.
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Similarly, given a σ-finite measure space Σ, we can consider the α-local max-
imal functionMα, given by

MαU(x, s) = sup
B∈Bα
B3x

ˆ
B

|U(z, s)| dγ(z)

for U ∈ L1
loc(γ;Lq(Σ)) with q ∈ (1,∞) (see [80] for a general overview). Again,

this is controlled pointwise by a finite sum of its dyadic counterparts, that is,

MαU(x, s) ≤ Cα,cX
∑
D
MDU(x, s) (2.10)

for some finite collection of dyadic systems D. The dyadic lattice maximal op-
eratorsMD are again amenable to Martingale theory. Indeed, according to the
martingale version of Fefferman–Stein inequality (see [66, Subsection 3.1]) we
have for 1 < p <∞ that

‖MDU‖Lp(γ;Lq(Σ)) .p,q ‖U‖Lp(γ;Lq(Σ)),

and consequently

‖MαU‖Lp(γ;Lq(Σ)) .p,q cXCα,cX‖U‖Lp(γ;Lq(Σ)).

Although the explicit statement in [66] concerns the case of sequences, i.e. the
case Σ = N, it immediately extends to more general measure spaces Σ by means
of lattice finite representability: Lq(Σ) is lattice finitely representable in `q in
the sense that for every finite dimensional sublattice E of Lq(Σ) and every ε >
0 there exists a sublattice F of `q and a lattice isomorphism Φ: E → F for
which ||Φ|| ||Φ−1|| ≤ 1 + ε (see for instance [40] and the references therein). For
boundedness ofMD it suffices to consider simple functions U : X → Lq(Σ) and
the boundedness is therefore transferable in lattice finite representability.

Remark 2.5.2. Martingale theory can be avoided by analysing Mα by means of
a ‘local Vitali covering lemma’, analogous to the usual analysis of the (global)
maximal operator through the usual Vitali covering lemma. One can then prove
the duality of tp,qα and tp

′,q′
α for 1 < p, q < ∞, and recover the boundedness of

the projections Nα by realising them as the adjoints of the (bounded) inclusions
from tp,qα into the appropriate Lq-valued Lp-space. This is the method of Bernal
[23], used by the first author for global tent spaces in [3]. In this way we also
avoid the use of the Lq(Σ)-valued maximal functionMα, but we do not achieve
the potential generality of the above method.
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2.6 Appendix 2: Cone covering lemma for non-
negatively curved Riemannian manifolds

In this section we prove a stronger version of Lemma 2.4.4 that will be useful for
the theory of vector-valued tent spaces. This is based on a ‘cone covering lemma’,
the Euclidean version of which appears in [59, Lemma 10].

2.6.1 Review of non-negatively curved spaces

Recall that a complete length space (X, d) has non-negative curvature if and only
if for every point x ∈ X and for every pair of geodesics ρ1, ρ2 with ρ1(0) = ρ2(0) =
x, the comparison angle

∠ρ1(t)xρ2(t) := cos−1
(
d(x, ρ1(t))2 + d(x, ρ2(t))2 − d(ρ1(t), ρ2(t))

2d(x, ρ1(t))d(x, ρ2(t))

)

is nonincreasing in t (this is the corresponding angle of a Euclidean triangle with
sidelengths d(x, ρ1(t)), d(x, ρ2(t)), and d(ρ1(t), ρ2(t))). Actually, this monotonic-
ity is a combination of the usual (local) definition of non-negative curvature and
the conclusion of Topogonov’s theorem: see [27, Definition 4.3.1 and Theorem
10.3.1] for details.

We have the following simple corollary of this characterisation of non-negative
curvature.

Corollary 2.6.1. Suppose (X, d) is a complete length space with non-negative
curvature. Let x, y, z ∈ X, let ρxy and ρxz be two unit speed minimising geodesics
from x to y and z respectively, and denote the angle ∠(ρ′xy(0), ρ′xz(0)) by θ. Then

d(y, z) ≤ d(x, z) tan θ.

Proof. We have
θ = lim

t→0
∠(ρ′xy(t), ρ′xz(t)) ≥ θ′

by Topogonov’s theorem (as stated above), where θ′ is the comparison angle
∠̃yxz. By basic trigonometry,

tan θ′ = d(y, z)
d(x, z) ,

and so we have
tan θ ≥ d(y, z)

d(x, z) .

This yields the result.

60



In particular, if ρ1 and ρ2 are two unit speed geodesics emanating from a point
x ∈ X with ∠(ρ′1(0), ρ′2(0)) ≤ tan−1(1/4), then

d(ρ1(t), ρ2(t)) ≤ t/4

for all t > 0, since d(ρ2(0), ρ2(t)) ≤ t.

2.6.2 Cone covering

In this section, we assume that X is a complete geometrically doubling Rieman-
nian manifold, so that (X, d) is a complete length space. We also fix φ and m

satisfying condition (A) as in Section 2.2 and assume in addition the following
comparability condition:

(C) For every α > 0, there exists a constant cα such that for all pairs of points
x, y ∈ X,

d(x, y) ≤ αm(x) =⇒ m(x) ≤ cαm(y).

Remark 2.6.2. We could work in the context of complete geometrically doubling
non-negatively curved length spaces; we have imposed smooth structure in order
to use the language of tangent spaces rather than that of spaces of directions.
The length space setting is only a small generalisation of the manifold setting,
due to the fact that complete non-negatively curved length spaces are manifolds
almost everywhere.

Given parameters α ≥ 1 and λ ∈ (0, 1), we define the extension of an open
set E ⊂ X by

E∗α,λ :=
⋃{

B ∈ Bα : γ(B ∩ E)
γ(B) > λ

}
.

Note that we can write

E∗α,λ = {x ∈ X : Mα1E(x) > λ},

where Mα is the α-local maximal operator from Appendix 2.5, and so E∗α,λ is
open. Furthermore, since for each α ≥ 1 the local maximal function is of weak
type (1, 1) with respect to γ, we have

γ(E∗α,λ) ≤
Cα
λ
γ(E)

for all λ ∈ (0, 1).
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For all x ∈ X, for all unit tangent vectors v ∈ TxX (recalling that we have
assumed that X is a manifold), and for all t > 0, define the sector

R(v, t) :=
⋃

0≤s≤t
B(ρ(s), s/4)

opening from x in the direction of v along the unit speed geodesic ρ with ρ′(0) = v.

Lemma 2.6.3. Let β ≥ 1. There exists α ≥ 1 and λ ∈ (0, 1) such that the
following holds: if E ⊂ X is open and y ∈ R(v, t) ⊂ E, with v ∈ TxX and
0 < t ≤ βm(x), then B(y, 2t) ⊂ E∗α,λ.

Proof. Suppose that E ⊂ X is open and y ∈ R(v, t) ⊂ E, with v ∈ TxX and
0 < t ≤ βm(x). We search for α and λ so that

B(y, 2t) ∈ Bα and γ(B(y, 2t) ∩ E)
γ(B(y, 2t)) > λ.

Denote by ρ the unit speed geodesic determined by v and begin by observing that
B(ρ(t), t/4) ⊂ R(v, t) ⊂ B(y, 2t) ∩ E, while B(y, 2t) ⊂ B(ρ(t), 4t), so that

γ(B(y, 2t) ∩ E)
γ(B(y, 2t)) ≥ γ(B(ρ(t), t/4))

γ(B(ρ(t), 4t)) .

Now d(x, ρ(t)) ≤ t ≤ βm(x), and by (C) we have m(x) ≤ cβm(ρ(t)), so t ≤
βm(x) ≤ βcβm(ρ(t)). This means that B(ρ(t), t/4) is βcβ/4-admissible, so that
by (A),

γ(B(ρ(t), 4t)) ≤ Aβγ
(
B
(
ρ(t), t4

))
for some constant Aβ. We may now choose λ < 1/Aβ to get

γ(B(y, 2t) ∩ E)
γ(B(y, 2t)) > λ.

To choose α, note that since d(x, y) ≤ 2t ≤ 2βm(x), we have m(x) ≤ c2βm(y),
and so t ≤ βc2βm(y). In order to have B(y, 2t) ∈ Bα, we choose α = 2βc2β. By
the definition of the extension, we now have B(y, 2t) ⊂ E∗α,λ.

Dictated by the final paragraph in the proof of the following lemma, we now
fix β = c1, and choose α and λ in accordance with Lemma 2.6.3. We also write
E∗ = E∗α,λ. Recall that the admissible tent T (O) over an open set O ⊂ X is given
by

T (O) := D \ Γ(Oc),

where Γ(Oc) := ∪x∈OcΓ(x).
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Lemma 2.6.4 (Cone covering lemma). Assume that X is non-negatively curved,
and let E ⊂ X be a bounded open set. Then for every x ∈ E there exist finitely
many points x1, . . . , xN ∈ X \E, with N depending only on the dimension of X,
such that

Γ(x) \ T (E∗) ⊂
N⋃
m=1

Γ(xm).

Proof. Let x ∈ E and pick unit vectors v1, . . . , vN ∈ TxX so that every v ∈ TxX
has ∠(v, vm) ≤ tan−1(1/4) for some m = 1, . . . , N . For each m, denote by ρm the
unit speed geodesic determined by vm, and let tm > 0 be the minimal number (E
is bounded) for which B(ρm(tm), tm/4) intersects X \ E, so that we may choose
an xm ∈ (X \ E) ∩B(ρm(tm), tm/4). Note that now R(vm, tm) ⊂ E for each m.

Letting (y, t) ∈ Γ(x) \ T (E∗), we need to show that d(y, xm) < t for some
m. By completeness of X, we may choose a unit speed minimising geodesic ρ
from x to y and then fix an m so that ∠(ρ′(0), vm) ≤ tan−1(1/4). Corollary 2.6.1
guarantees that y ∈ R(vm, d(x, y)).

Suppose first that x is close to Ec in the direction of vm, in the sense that
tm ≤ βm(x). If d(x, y) > tm, then by Corollary 2.6.1 ρ(tm) is in B(ρm(tm), tm/4),
and so

d(y, xm) ≤ d(y, ρ(tm)) + d(ρ(tm), xm)

≤ d(y, ρ(tm)) + tm
2

≤ d(y, ρ(tm)) + d(ρ(tm), x)
= d(y, x) < t.

On the other hand, if d(x, y) ≤ tm, then y ∈ R(vm, tm)—that is, y ∈ B(ρm(s), s/4)
for some 0 ≤ s ≤ tm—and so

d(y, xm) ≤ d(y, ρm(s)) + d(ρm(s), ρm(tm)) + d(ρm(tm), xm)

≤ s

4 + tm − s+ tm
4 ≤ 2tm.

According to Lemma 2.6.3, B(y, 2tm) ⊂ E∗, but since (y, t) 6∈ T (E∗) implies that
B(y, t) 6⊂ E∗, we must have 2tm < t.

Second, we show that it is not possible to have tm > βm(x) with β = c1. Note
first that since d(x, y) < t < m(y), we have by (C) that t < m(y) ≤ c1m(x). If
indeed we had tm > c1m(x), then y ∈ R(vm, c1m(x)) ⊂ R(vm, tm) ⊂ E. Invoking
Lemma 2.6.3 gives B(y, c1m(x)) ⊂ B(y, 2c1m(x)) ⊂ E∗, while B(y, t) 6⊂ E∗ and
so c1m(x) < t, which is a contradiction.

63



The cone covering lemma allows stronger pointwise estimation of the func-
tional Aq when q ≥ 1 (cf. Lemma 2.4.4):

Corollary 2.6.5. Assume that X is non-negatively curved. Suppose 1 ≤ q <∞,
and let f be a function on D with bounded support. Let λ > 0 and write E =
{x ∈ X : Aqf(x) > λ}. Then

Aq(f1D\T (E∗))(x) .dimX λ for all x ∈ X.

Proof. If x ∈ X \ E, then

Aq(f1D\T (E∗))(x) ≤ Aqf(x) ≤ λ

by the definition of E. So let x ∈ E. Since E is a bounded open set, we may
use Lemma 2.6.4 to pick x1, . . . , xN ∈ X \ E (with N depending only on the
dimension of X) such that

Γ(x) \ T (E∗) ⊂
N⋃
m=1

Γ(xm).

We can then estimate

Aq(f1D\T (E∗))(x) =
(¨

Γ(x)\T (E∗)
|f(y, t)|q dγ(y)

γ(B(y, t))
dt

t

)1/q

≤
N∑
m=1

(¨
Γ(xm)

|f(y, t)|q dγ(y)
γ(B(y, t))

dt

t

)1/q

≤ Nλ,

proving the corollary.

Remark 2.6.6. At the time of writing we do not know of any doubling Riemannian
manifolds (equipped with φ and m) for which the cone covering lemma fails.
It would be interesting to determine more precisely which spaces admit cone
coverings of the type above.
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Chapter 3

Interpolation and embeddings of
weighted tent spaces

Abstract

Given a metric measure space X, we consider a scale of function spaces T p,qs (X),
called the weighted tent space scale. This is an extension of the tent space scale of
Coifman, Meyer, and Stein. Under various geometric assumptions on X we iden-
tify some associated interpolation spaces, in particular certain real interpolation
spaces within the reflexive range. These are identified with a new scale of func-
tion spaces, which we call Z-spaces, that have recently appeared in the work of
Barton and Mayboroda on elliptic boundary value problems with boundary data
in Besov spaces. We also prove Hardy–Littlewood–Sobolev-type embeddings be-
tween weighted tent spaces.

3.1 Introduction

The tent spaces, denoted T p,q, are a scale of function spaces first introduced
by Coifman, Meyer, and Stein [32, 33] which have had many applications in
harmonic analysis and partial differential equations. In some of these applications
‘weighted’ tent spaces have been used implicitly. These spaces, which we denote
by T p,qs , seem not to have been considered as forming a scale of function spaces in
their own right until the work of Hofmann, Mayboroda, and McIntosh [50, §8.3],
in which factorisation and complex interpolation theorems are obtained for them.

In this article we further explore the weighted tent space scale. In the in-
terests of generality, we consider weighted tent spaces T p,qs (X) associated with a
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metric measure space X, although our theorems are new even in the classical case
where X = Rn equipped with the Lebesgue measure. Under sufficient geometric
assumptions on X (ranging from the doubling condition to the assumption that
X = Rn), we uncover two previously unknown novelties of the weighted tent
space scale.

First, we identify some real interpolation spaces between T p0,q
s0 and T p1,q

s1 when-
ever s0 6= s1. In Theorem 3.3.4 we prove that

(T p0,q
s0 , T p1,q

s1 )θ,pθ = Zpθ,q
sθ

(3.1)

for appropriately defined parameters, where the scale of ‘Z-spaces’ is defined in
Definition 3.3.3. We require p0, p1, q > 1 in this identification, but in Theorem
3.3.9 we show that in the Euclidean setting the result holds for all p0, p1 > 0 and
q ≥ 1. In the Euclidean setting, Z-spaces have appeared previously in the work of
Barton and Mayboroda [21]. In their notation we have Zp,q

s (Rn) = L(p, ns+1, q).
Barton and Mayboroda show that these function spaces are useful in the study
of elliptic boundary value problems with boundary data in Besov spaces. The
connection with weighted tent spaces shown here is new.

Second, we have continuous embeddings

T p0,q
s0 ↪→ T p1,q

s1

whenever the parameters satisfy the relation

s1 − s0 = 1
p1
− 1
p0
. (3.2)

This is Theorem 3.3.19. Thus a kind of Hardy–Littlewood–Sobolev embedding
theorem holds for the weighted tent space scale, and by analogy we are justified
in referring to the parameter s in T p,qs as a regularity parameter.

We also identify complex interpolation spaces between weighted tent spaces
in the Banach range. This result is already well-known in the Euclidean setting,
and its proof does not involve any fundamentally new arguments, but we include
it here for completeness.

These results in this paper will play a crucial role in forthcoming work,1 in
which we will use weighted tent spaces and Z-spaces to construct abstract ho-
mogeneous Hardy–Sobolev and Besov spaces associated with elliptic differential
operators with rough coefficients. This will be an extension of the abstract Hardy
space techniques initiated independently by Auscher, McIntosh, and Russ [13] and
Hofmann and Mayboroda [49].

1See Part II of this thesis.
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Notation

Given a measure space (X,µ), we write L0(X) for the set of µ-measurable func-
tions with values in the extended complex numbers C ∪ {±∞,±i∞}. As usual,
by a ‘measurable function’, we actually mean an equivalence class of measurable
functions which are equal except possibly on a set of measure zero. We will say
that a function f ∈ L0(X) is essentially supported in a subset E ⊂ X if we have
µ{x ∈ X \ E : f(x) 6= 0} = 0.

A quasi-Banach space is a complete quasi-normed vector space; see for exam-
ple [56, §2] for further information. If B is a quasi-Banach space, we will write
the quasi-norm of B as either ||·||B or ||· | B||, according to typographical needs.

For 1 ≤ p ≤ ∞, we let p′ denote the Hölder conjugate of p, which is defined
by the relation

1 = 1
p

+ 1
p′
,

with 1/∞ := 0. For 0 < p, q ≤ ∞, we define the number

δp,q := 1
q
− 1
p
,

again with 1/∞ := 0. This shorthand will be used often throughout this article.
We will frequently use the the identities

δp,q + δq,r = δp,r,

δp,q = δq′,p′ ,

1/q = δ∞,q = δq′,1.

As is now standard in harmonic analysis, we write a . b to mean that a ≤ Cb

for some unimportant constant C ≥ 1 which will generally change from line to
line. We also write a .c1,c2,... b to mean that a ≤ C(c1, c2, . . .)b.
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3.2 Preliminaries

3.2.1 Metric measure spaces

A metric measure space is a triple (X, d, µ), where (X, d) is a nonempty metric
space and µ is a Borel measure on X. For every x ∈ X and r > 0, we write
B(x, r) := {y ∈ X : d(x, y) < r} for the ball of radius r, and we also write
V (x, r) := µ(B(x, r)) for the volume of this ball. The generalised half-space
associated with X is the set X+ := X×R+, equipped with the product topology
and the product measure dµ(y) dt/t.

We say that (X, d, µ) is nondegenerate if

0 < V (x, r) <∞ for all x ∈ X and r > 0. (3.3)

This immediately implies that the measure space (X,µ) is σ-finite, as X may be
written as an increasing sequence of balls

X =
⋃
n∈N

B(x0, n) (3.4)

for any point x0 ∈ X. Nondegeneracy also implies that the metric space (X, d) is
separable [24, Proposition 1.6]. To rule out pathological behaviour (which is not
particularly interesting from the viewpoint of tent spaces), we will always assume
nondegeneracy.

Generally we will need to make further geometric assumptions on (X, d, µ).
In this article, the following two conditions will be used at various points. We
say that (X, d, µ) is doubling if there exists a constant C ≥ 1 such that

V (x, 2r) ≤ CV (x, r) for all (x, r) ∈ X+.

A consequence of the doubling condition is that there exists a minimal number
n ≥ 0, called the doubling dimension of X, and a constant C ≥ 1 such that

V (x,R) ≤ C(R/r)nV (x, r)

68



for all x ∈ X and 0 < r ≤ R <∞.
For n > 0, we say that (X, d, µ) is AD-regular of dimension n if there exists

a constant C ≥ 1 such that

C−1rn ≤ V (x, r) ≤ Crn (3.5)

for all x ∈ X and all r < diam(X). One can show that AD-regularity (of some
dimension) implies doubling. Note that if X is unbounded and AD-regular of
dimension n, then (3.5) holds for all x ∈ X and all r > 0.

3.2.2 Unweighted tent spaces

Throughout this section we suppose that (X, d, µ) is a nondegenerate metric mea-
sure space. We will not assume any further geometric conditions on X without
explicit mention. All of the results here are known, at least in some form. We
provide statements for ease of reference and some proofs for completeness.

For x ∈ X we define the cone with vertex x by

Γ(x) := {(y, t) ∈ X+ : y ∈ B(x, t)},

and for each ball B ⊂ X we define the tent with base B by

T (B) := X+ \

 ⋃
x/∈B

Γ(x)
 .

Equivalently, T (B) is the set of points (y, t) ∈ X+ such that B(y, t) ⊂ B. From
this characterisation it is clear that if (y, t) ∈ T (B), then t ≤ rB, where we define

rB := sup{r > 0 : B(y, r) ⊂ B for some y ∈ X}.

Note that it is possible to have rB(y,t) > t.
Fix q ∈ (0,∞) and α ∈ R. For f ∈ L0(X+), define functions Aqf and Cqαf on

X by

Aqf(x) :=
(¨

Γ(x)
|f(y, t)|q dµ(y)

V (y, t)
dt

t

)1/q

(3.6)

and

Cqαf(x) := sup
B3x

1
µ(B)α

(
1

µ(B)

¨
T (B)
|f(y, t)|q dµ(y) dt

t

)1/q

(3.7)

for all x ∈ X, where the supremum in (3.7) is taken over all balls B ⊂ X

containing x. We abbreviate Cq := Cq0 . Note that the integrals above are always
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defined (though possibly infinite) as the integrands are non-negative, and so we
need not assume any local q-integrability of f . We also define

A∞f(x) := ess sup
(y,t)∈Γ(x)

|f(y, t)| (3.8)

and
C∞α f(x) := sup

B3x

1
µ(B)1+α ess sup

(y,t)∈T (B)
|f(y, t)|.

Lemma 3.2.1. Suppose that q ∈ (0,∞], α ∈ R, and f ∈ L0(X+). Then the
functions Aqf and Cqαf are lower semicontinuous.

Proof. For q 6= ∞ see [3, Lemmas A.6 and A.7]. It remains only to show that
A∞f and C∞α f are lower semicontinuous for f ∈ L0(X+).

For each s > 0 write

Γ(x) + s := {(y, t) ∈ X+ : (y, t− s) ∈ Γ(x)} = {(y, t) ∈ X+ : y ∈ B(x, t− s)}.

Geometrically Γ(x) + s is a ‘vertically translated’ cone, and Γ(x) + s ⊃ Γ(x) + r

for all r < s. The triangle inequality implies that

Γ(x) + s ⊂ Γ(x′) for all x′ ∈ B(x, s).

To show that A∞f is lower semicontinuous, suppose that x ∈ X and λ > 0
are such that (A∞f)(x) > λ. Then the set O := {(y, t) ∈ Γ(x) : |f(y, t)| > λ}
has positive measure. We have

O =
∞⋃
n=1

O ∩ (Γ(x) + n−1).

Since the sequence of sets O ∩ (Γ(x) + n−1) is increasing in n, and since O has
positive measure, we find that there exists n ∈ N such that O ∩ (Γ(x) + n−1) has
positive measure. Thus for all x′ ∈ B(x, n−1),

{(y, t) ∈ Γ(x′) : |f(y, t)| > λ} ⊃ O ∩ (Γ(x) + n−1)

has positive measure, and so (A∞f)(x′) > λ. Therefore A∞f is lower semicon-
tinuous.

The argument for C∞α is simpler. We have (C∞α f)(x) > λ if and only if there
exists a ball B 3 x such that

1
µ(B)1+α ess sup

(y,t)∈T (B)
|f(y, t)| > λ.

This immediately yields (C∞α f)(x′) > λ for all x′ ∈ B, and so C∞α f is lower
semicontinuous.
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Definition 3.2.2. For p ∈ (0,∞) and q ∈ (0,∞], the tent space T p,q(X) is the
set

T p,q(X) := {f ∈ L0(X+) : Aqf ∈ Lp(X)}

equipped with the quasi-norm

||f ||T p,q(X) := ||Aqf ||Lp(X) .

We define T∞,q(X) by

T∞,q(X) := {f ∈ L0(X+) : Cqf ∈ L∞(X)}

equipped with the corresponding quasi-norm. We define T∞,∞(X) := L∞(X+)
with equal norms.

For the sake of notational clarity, we will write T p,q rather than T p,q(X) unless
we wish to emphasise a particular choice of X. Although we will always refer to
tent space ‘quasi-norms’, these are norms when p, q ≥ 1.

Remark 3.2.3. Our definition of A∞f gives a function which is less than or equal
to the corresponding function defined by Coifman, Meyer, and Stein [33], which
uses suprema instead of essential suprema. We also do not impose any continuity
conditions in our definition of T p,∞. Therefore our space T p,∞(Rn) is strictly
larger than the Coifman–Meyer–Stein version.

By a cylinder we mean a subset C ⊂ X+ of the form C = B(x, r) × (a, b)
for some (x, r) ∈ X+ and 0 < a < b < ∞. We say that a function f ∈ L0(X+)
is cylindrically supported if it is essentially supported in a cylinder. In general
cylinders may not be precompact, and so the notion of cylindrical support is more
general than that of compact support. For all p, q ∈ (0,∞] we define

T p,q;c := {f ∈ T p,q : f is cylindrically supported}.

and
Lpc(X+) := {f ∈ Lp(X+) : f is cylindrically supported}.

A straightforward application of the Fubini–Tonelli theorem shows that for
all q ∈ (0,∞) and for all f ∈ L0(X+),

||f ||T q,q = ||f ||Lq(X+) ,

and so T q,q = Lq(X+). When q =∞ this is true by definition.
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Proposition 3.2.4. For all p, q ∈ (0,∞), the subspace T p,q;c ⊂ T p,q is dense in
T p,q. Furthermore, if X is doubling, then for all p, q ∈ (0,∞], T p,q is complete,
and when p, q 6=∞, Lqc(X+) is densely contained in T p,q.

Proof. The second statement has already been proven in [3, Proposition 3.5],2 so
we need only prove the first statement. Suppose f ∈ T p,q and fix a point x0 ∈ X.
For each k ∈ N, define

Ck := B(x0, k)× (k−1, k) and fk := 1Ckf.

Then each fk is cylindrically supported. We have

lim
k→∞
||f − fk||pT p,q = lim

k→∞

ˆ
X

Aq(1Cc
k
f)(x)p dµ(x)

=
ˆ
X

lim
k→∞
Aq(1Cc

k
f)(x)p dµ(x)

=
ˆ
X

(
lim
k→∞

¨
Γ(x)
|(1Cc

k
f)(y, t)|q dµ(y)

V (y, t)
dt

t

)p/q
dµ(x)

=
ˆ
X

(¨
Γ(x)

lim
k→∞
|(1Cc

k
f)(y, t)|q dµ(y)

V (y, t)
dt

t

)p/q
dµ(x)

= 0.

All interchanges of limits and integrals follow from monotone convergence. Hence
we have f = limk→∞ fk, which completes the proof.

Recall the following duality from [3, Proposition 3.10].

Proposition 3.2.5. Suppose that X is doubling, p ∈ [1,∞), and q ∈ (1,∞).
Then the L2(X+) inner product

〈f, g〉 :=
¨
X+

f(x, t)g(x, t) dµ(x) dt
t

(3.9)

identifies the dual of T p,q with T p′,q′.

Suppose that p ∈ (0, 1], q ∈ [p,∞], and B ⊂ X is a ball. We say that
a function a ∈ L0(X+) is a T p,q atom (associated with B) if a is essentially
supported in T (B) and if the size estimate

||a||T q,q ≤ µ(B)δp,q

holds (recall that δp,q := q−1 − p−1). A short argument shows that if a is a
T p,q-atom, then ||a||T p,q ≤ 1.

2The cases where q = ∞ are not covered there. The same proof works—the only missing
ingredient is Lemma 3.4.1, which we defer to the end of the article.
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Theorem 3.2.6 (Atomic decomposition). Suppose that X is doubling. Let p ∈
(0, 1] and q ∈ [p,∞]. Then a function f ∈ L0(X+) is in T p,q if and only if there
exists a sequence (ak)k∈N of T p,q-atoms and a sequence (λk)k∈N ∈ `p(N) such that

f =
∑
k∈N

λkak (3.10)

with convergence in T p,q. Furthermore, we have

||f ||T p,q ' inf ||λk||`p(N) ,

where the infimum is taken over all decompositions of the form (3.10).

This is proven by Russ when q = 2 [81], and the same proof works for general
q ∈ [p,∞). For q = ∞ we need to combine the original argument of Coifman,
Meyer, and Stein [33, Proposition 2] with that of Russ. We defer this to Section
3.4.2.

3.2.3 Weighted tent spaces: definitions, duality, and atoms

We continue to suppose that (X, d, µ) is a nondegenerate metric measure space,
and again we make no further assumptions without explicit mention.

For each s ∈ R, we can define an operator V s on L0(X+) by

(V sf)(x, t) := V (x, t)sf(x, t)

for all (x, t) ∈ X+. Note that for r, s ∈ R the equality V rV s = V r+s holds, and
also that V 0 is the identity operator. Using these operators we define modified
tent spaces, which we call weighted tent spaces, as follows.

Definition 3.2.7. For p ∈ (0,∞), q ∈ (0,∞], and s ∈ R, the weighted tent space
T p,qs is the set

T p,qs := {f ∈ L0(X+) : V −sf ∈ T p,q}

equipped with the quasi-norm

||f ||T p,qs :=
∣∣∣∣∣∣V −sf ∣∣∣∣∣∣

T p,q
.

We also define T∞,∞s in this way. For q 6= ∞, and with an additional parameter
α ∈ R, we define T∞,qs;α by the quasi-norm

||f ||T∞,qs;α
:=
∣∣∣∣∣∣Cqα(V −sf)

∣∣∣∣∣∣
L∞(X)

.

Note that T∞,q0;0 = T∞,q. We write T∞,qs := T∞,qs;0 .
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Remark 3.2.8. The weighted tent space quasi-norms of Hofmann, Mayboroda,
and McIntosh [50, §8.3] (with p 6= ∞) and Huang [51] (including p = ∞ with
α = 0) are given by

||f ||T p,qs (Rn) :=
∣∣∣∣∣∣(y, t) 7→ t−sf(y, t)

∣∣∣∣∣∣
T p,q(Rn)

, (3.11)

which are equivalent to those of our spaces T p,qs/n(Rn). In general, when X is
unbounded and AD-regular of dimension n, the quasi-norm in (3.11) (with X

replacing Rn) is equivalent to that of our T p,qs/n. We have chosen the convention of
weighting with ball volumes, rather than with the variable t, because this leads to
more geometrically intrinsic function spaces and supports embedding theorems
under weaker assumptions.

For all r, s ∈ R, the operator V r is an isometry from T p,qs to T p,qs+r. The
operator V −r is also an isometry, now from T p,qs+r to T p,qs , and so for fixed p and q
the weighted tent spaces T p,qs are isometrically isomorphic for all s ∈ R. Thus by
Proposition 3.2.4, when X is doubling, the spaces T p,qs are all complete.

Recall the L2(X+) inner product (3.9), which induces a duality pairing be-
tween T p,q and T p′,q′ for appropriate p and q when X is doubling. For all s ∈ R
and all f, g ∈ L2(X+) we have the equality

〈f, g〉 = 〈V −sf, V sg〉, (3.12)

which yields the following duality result.

Proposition 3.2.9. Suppose that X is doubling, p ∈ [1,∞), q ∈ (1,∞), and
s ∈ R. Then the L2(X+) inner product (3.9) identifies the dual of T p,qs with
T p
′,q′

−s .

Proof. If f ∈ T p,qs and g ∈ T p
′,q′

−s , then we have V −sf ∈ T p,q and V sg ∈ T p′,q′ , so
by Proposition 3.2.5 and (3.12) we have

|〈f, g〉| .
∣∣∣∣∣∣V −sf ∣∣∣∣∣∣

T p,q
||V sg||T p′,q′ = ||f ||T p,qs ||g||T p′,q′−s

.

Conversely, if ϕ ∈ (T p,qs )′, then the map f̃ 7→ ϕ(V sf̃) determines a bounded
linear functional on T p,q with norm dominated by ||ϕ||. Hence by Proposition
3.2.5 there exists a function g̃ ∈ T p′,q′ with ||g̃||T p′,q′ . ||ϕ|| such that

ϕ(f) = ϕ(V s(V −sf)) = 〈V −sf, g̃〉 = 〈f, V −sg̃〉

for all f ∈ T p,qs . Since ∣∣∣∣∣∣V −sg̃∣∣∣∣∣∣
T p
′,q′
−s

= ||g̃||T p′,q′ . ||ϕ|| ,

we are done.
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There is also a duality result for p < 1 which incorporates the spaces T∞,qs;α

with α > 0. Before we can prove it, we need to discuss atomic decompositions.
Suppose that p ∈ (0, 1], q ∈ [p,∞], s ∈ R, and B ⊂ X is a ball. We say that

a function a ∈ L0(X+) is a T p,qs -atom (associated with B) if V −sa is a T p,q-atom.
This is equivalent to demanding that a is essentially supported in T (B) and that

||a||T q,qs ≤ µ(B)δp,q .

The atomic decomposition theorem for unweighted tent spaces (Theorem 3.2.6)
immediately implies its weighted counterpart.

Proposition 3.2.10 (Atomic decomposition for weighted tent spaces). Suppose
that X is doubling. Let p ∈ (0, 1], q ∈ [p,∞], and s ∈ R. Then a function
f ∈ L0(X+) is in T p,qs if and only if there exists a sequence (ak)k∈N of T p,qs -atoms
and a sequence (λk)k∈N ∈ `p(N) such that

f =
∑
k∈N

λkak (3.13)

with convergence in T p,qs . Furthermore, we have

||f ||T p,qs ' inf ||λk||`p(N) ,

where the infimum is taken over all decompositions of the form (3.13).

Using this, we can prove the following duality result for p < 1.

Theorem 3.2.11. Suppose that X is doubling, p ∈ (0, 1), q ∈ [1,∞), and s ∈ R.
Then the L2(X+) inner product (3.9) identifies the dual of T p,qs with T∞,q

′

−s;δ1,p.

Proof. First suppose that a is a T p,qs -atom associated with a ball B ⊂ X, and
that g ∈ T∞,q

′

−s,δ1,p . Then we have

|〈a, g〉| ≤
¨
T (B)
|V −sa(y, t)||V sg(y, t)| dµ(y) dt

t

≤ ||a||T q,qs µ(B)1/q′µ(B)δ1,p ||g||
T∞,q

′
−s,δ1,p

≤ µ(B)δp,q+δq,1+δ1,p ||g||
T∞,q

′
−s,δ1,p

= ||g||
T∞,q

′
−s,δ1,p

.

For general f ∈ T p,qs we write f as a sum of T p,qs -atoms as in (3.13) and get

|〈f, g〉| ≤ ||g||
T∞,q

′
−s,δ1,p

||λ||`1 ≤ ||g||T∞,q′−s,δ1,p
||λ||`p
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using that p < 1. Taking the infimum over all atomic decompositions completes
the argument.

Conversely, suppose that ϕ ∈ (T p,qs )′. Exactly as in the classical duality proof
(see [3, Proof of Proposition 3.10]), using the doubling assumption, there exists
a function g ∈ Lq

′

loc(X+) such that

ϕ(f) = 〈f, g〉

for all f ∈ T p,q;cs . To show that g is in T∞,q
′

−s,δ1,p , we estimate ||V sg||Lq′ (T (B)) for each
ball B ⊂ X by duality:

||V sg||Lq′ (T (B)) = sup
f∈Lq(T (B))

|〈f, V sg〉| ||f ||−1
Lq(T (B))

= sup
f∈Lqc(T (B))

|〈V sf, g〉| ||f ||−1
Lq(T (B)) .

Hölder’s inequality implies that

||V sf ||T p,qs ≤ µ(B)δq,p ||f ||Lq(T (B))

when f is essentially supported in T (B), so we have

||V sg||Lq′ (T (B)) ≤ µ(B)δq,p ||ϕ||(T p,qs )′ ,

and therefore

||g||
T∞,q

′
−s,δ1,p

= sup
B⊂X

µ(B)δp,1−(1/q′) ||V sg||Lq′ (T (B))

≤ ||ϕ||(T p,qs )′ sup
B⊂X

µ(B)δp,1+δ1,q+δq,p

= ||ϕ||(T p,qs )′ ,

which completes the proof.

Remark 3.2.12. Note that q = 1 is included here, and excluded in the other
duality results of this article. Generally the spaces T p,q with p ≤ q are easier to
handle than those with p > q.

We end this section by detailing a technique, usually referred to as ‘convex
reduction’, which is very useful in relating tent spaces to each other. Suppose
f ∈ L0(X+) and M > 0. We define a function fM ∈ L0(X+) by

(fM)(x, t) := |f(x, t)|M
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for all (x, t) ∈ X+. For all q ∈ (0,∞] and s ∈ R we then have

Aq(V −sfM) = AMq(V −s/Mf)M ,

and for α ∈ R we also have

Cqα(V −sfM) = CMq
α/M(V −s/Mf)M .

Therefore, for p ∈ (0,∞) we have∣∣∣∣∣∣fM ∣∣∣∣∣∣
T p,qs

=
∣∣∣∣∣∣AMq(V −s/Mf)M

∣∣∣∣∣∣
Lp(X)

=
∣∣∣∣∣∣AMq(V −s/Mf)

∣∣∣∣∣∣M
LMp(X)

=
∣∣∣∣∣∣f | TMp,Mq

s/M

∣∣∣∣∣∣M ,

and likewise for p =∞ and q <∞ we have∣∣∣∣∣∣fM ∣∣∣∣∣∣
T∞,qs,α

=
∣∣∣∣∣∣f | T∞,Mq

s/M,α/M

∣∣∣∣∣∣M
The case p = q =∞ behaves in the same way:∣∣∣∣∣∣fM ∣∣∣∣∣∣

T∞,∞s

=
∣∣∣∣∣∣(V −s/Mf)M

∣∣∣∣∣∣
L∞(X+)

= ||f ||MT∞,∞
s/M

.

These equalities often allow us to deduce properties of T p,qs from properties of
TMp,Mq
s/M , and vice versa. We will use them frequently.

3.3 Interpolation and embeddings

As always, we assume that (X, d, µ) is a nondegenerate metric measure space.
We will freely use notation and terminology regarding interpolation theory; the
uninitiated reader may refer to Bergh and Löfström [22].

3.3.1 Complex interpolation

In this section we will make the following identification of the complex inter-
polants of weighted tent spaces in the Banach range of exponents.

Theorem 3.3.1. Suppose that X is doubling, p0, p1 ∈ [1,∞] (not both ∞),
q0, q1 ∈ (1,∞), s0, s1 ∈ R, and θ ∈ (0, 1). Then we have the identification

[T p0,q0
s0 , T p1,q1

s1 ]θ = T pθ,qθsθ

where p−1
θ = (1− θ)p−1

0 + θp−1
1 , q−1

θ = (1− θ)q−1
0 + θq−1

1 , and sθ = (1− θ)s0 + θs1.
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Remark 3.3.2. In the case where X = Rn with the Euclidean distance and
Lebesgue measure, this result (with p0, p1 < 1 permitted) is due to Hofmann,
Mayboroda, and McIntosh [50, Lemma 8.23]. A more general result, still with
X = Rn, is proven by Huang [51, Theorem 4.3] with q0, q1 = ∞ also permitted,
and with Whitney averages incorporated. Both of these results are proven by
means of factorisation theorems for weighted tent spaces (with Whitney averages
in the second case), and by invoking an extension of Calderón’s product formula
to quasi-Banach spaces due to Kalton and Mitrea [58, Theorem 3.4]. We have
chosen to stay in the Banach range with 1 < q0, q1 <∞ for now, as establishing
a general factorisation result would take us too far afield.

Note that if p0 =∞ (say) then we are implicitly considering T∞,q0
s0;α with α = 0;

interpolation of spaces with α 6= 0 is not covered by this theorem. This is because
the method of proof uses duality, and to realise T∞,q0

s0;α with α 6= 0 as a dual space
we would need to deal with complex interpolation of quasi-Banach spaces, which
adds difficulties that we have chosen to avoid.

Before moving on to the proof of Theorem 3.3.1, we must fix some notation.
For q ∈ (1,∞) and s ∈ R, write

Lqs(X+) := Lq(X+, V −qs−1) := Lq
(
X+, V −qs(y, t) dµ(y)

V (y, t)
dt

t

)
(3.14)

(this notation is consistent with viewing the function V −qs−1 as a weight on the
product measure dµ dt/t).

An important observation, originating from Harboure, Torrea, and Viviani
[44], is that for all p ∈ [1,∞), q ∈ (1,∞) and s ∈ R, one can write

||f ||T p,qs =
∣∣∣∣∣∣Hf | Lp(X : Lqs(X+))

∣∣∣∣∣∣
for f ∈ L0(X+), where

Hf(x) = 1Γ(x)f.

Hence H is an isometry from T p,qs to Lp(X : Lqs(X+)). Because of the restriction
on q, the theory of Lebesgue spaces (more precisely, Bochner spaces) with values
in reflexive Banach spaces is then available to us.

This proof follows previous arguments of the author [3], which are based on
the ideas of Harboure, Torrea, and Viviani [44] and of Bernal [23], with only small
modifications to incorporate additional parameters. We include it to show where
these modifications occur: in the use of duality, and in the convex reduction.
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Proof of Theorem 3.3.1. First we will prove the result for p0, p1 ∈ (1,∞). Since
H is an isometry from T

pj ,qj
sj to Lpj(X : Lqjsj(X+)) for j = 0, 1, the interpolation

property implies that H is bounded (with norm ≤ 1 due to exactness of the
complex interpolation functor)

[T p0,q0
s0 , T p1,q1

s1 ]θ → Lpθ
(
X : [Lq0

s0(X+), Lq1
s1(X+)]θ

)
.

Here we have used the standard identification of complex interpolants of Banach-
valued Lebesgue spaces [22, Theorem 5.1.2]. The standard identification of com-
plex interpolants of weighted Lebesgue spaces [22, Theorem 5.5.3] gives

[Lq0
s0(X+), Lq1

s1(X+)]θ = Lqθsθ(X
+),

and we conclude that

||f ||T pθ,qθsθ
=
∣∣∣∣∣∣Hf | Lpθ(X : Lqθsθ(X

+))
∣∣∣∣∣∣

≤
∣∣∣∣∣∣f | [T p0,q0

s0 , T p1,q1
s1 ]θ

∣∣∣∣∣∣
for all f ∈ [T p0,q0

s0 , T p1,q1
s1 ]θ. Therefore

[T p0,q0
s0 , T p1,q1

s1 ]θ ⊂ T pθ,qθsθ
. (3.15)

To obtain the reverse inclusion, we use the duality theorem for complex inter-
polation [22, Theorem 4.5.1 and Corollary 4.5.2]. Since X is doubling and by our
restrictions on p and q, at least one of the spaces T p0,q0

s0 and T p1,q1
s1 is reflexive (by

Proposition 3.2.9) and their intersection is dense in both spaces (as it contains the
dense subspace Lmax(q0,q1)

c (X+) by Proposition 3.2.4). Therefore the assumptions
of the duality theorem for complex interpolation are satisfied, and we have

T pθ,qθsθ
= (T p

′
θ,q
′
θ

−sθ )′

⊂ [T p
′
0,q
′
0

−s0 , T
p′1,q

′
1

−s1 ]′θ
= [T p0,q0

s0 , T p1,q1
s1 ]θ

where the first two lines follow from Proposition (3.2.9) and (3.15), and the third
line uses the duality theorem for complex interpolation combined with Proposition
3.2.9.

We can extend this result to p0, p1 ∈ [1,∞] using the technique of [3, Proposi-
tion 3.18]. The argument is essentially identical, so we will not include the details
here.
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3.3.2 Real interpolation: the reflexive range

In order to discuss real interpolation of weighted tent spaces, we need to introduce
a new scale of function spaces, which we denote by Zp,q

s = Zp,q
s (X).3

Definition 3.3.3. For c0 ∈ (0,∞), c1 ∈ (1,∞), and (x, t) ∈ X+, we define the
Whitney region

Ωc0,c1(x, t) := B(x, c0t)× (c−1
1 t, c1t) ⊂ X+,

and for q ∈ (0,∞), f ∈ L0(X+), and (x, t) ∈ X+ we define the Lq-Whitney
average

(Wq
c0,c1f)(x, t) :=

(̂ˆ
Ωc0,c1 (x,t)

|f(ξ, τ)|q dµ(ξ) dτ
)1/q

.

For p, q ∈ (0,∞), s ∈ R, c0 ∈ (0,∞), c1 ∈ (1,∞), and f ∈ L0(X+), we then
define the quasi-norm

||f ||Zp,qs (X;c0,c1) :=
∣∣∣∣∣∣Wq

c0,c1(V −sf)
∣∣∣∣∣∣
Lp(X+)

.

and the Z-space

Zp,q
s (X; c0, c1) := {f ∈ L0(X+) : ||f ||Zp,qs (X;c0,c1) <∞}.

In this section we will prove the following theorem, which identifies real inter-
polants of weighted tent spaces in the reflexive range. We will extend this to the
full range of exponents in the Euclidean case in the next section.

Theorem 3.3.4. Suppose that X is AD-regular and unbounded, p0, p1, q ∈ (1,∞),
s0 6= s1 ∈ R, and θ ∈ (0, 1). Then for any c0 ∈ (0,∞) and c1 ∈ (1,∞) we have
the identification

(T p0,q
s0 , T p1,q

s1 )θ,pθ = Zpθ,q
sθ

(X; c0, c1) (3.16)

with equivalent norms, where p−1
θ = (1− θ)p−1

0 + θp−1
1 and sθ = (1− θ)s0 + θs1.

As a corollary, in the case when X is AD-regular and unbounded, and when
p, q > 1, the spaces Zp,q

s (X; c0, c1) are independent of the parameters (c0, c1) with
equivalent norms, and we can denote them all simply by Zp,q

s .4 We remark that
most of the proof does not require AD-regularity, but in its absence we obtain
identifications of the real interpolants which are less convenient.

3We use this notation because almost every other reasonable letter seems to be taken.
4One can prove independence of the parameters (c0, c1) directly when X is doubling, but

proving this here would take us even further off course.
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The proof relies on the following identification of real interpolants of weighted
Lq spaces, with fixed q and distinct weights, due to Gilbert [39, Theorem 3.7].
The cases p ≤ 1 and q < 1 are not considered there, but the proof still works
without any modifications in these cases. Note that the original statement of this
theorem contains a sign error in the expression corresponding to (3.17).

Theorem 3.3.5 (Gilbert). Suppose (M,µ) is a σ-finite measure space and let w
be a weight on (M,µ). Let p, q ∈ (0,∞) and θ ∈ (0, 1). For all r ∈ (1,∞), and
for f ∈ L0(M), the expressions∣∣∣∣∣∣∣∣(r−kθ ∣∣∣∣∣∣1x:w(x)∈(r−k,r−k+1]f

∣∣∣∣∣∣
Lq(M)

)
k∈Z

∣∣∣∣∣∣∣∣
`p(Z)

(3.17)

∣∣∣∣∣∣∣∣s1−θ
∣∣∣∣∣∣1x:w(x)≤1/sf

∣∣∣∣∣∣
Lq(M,wq)

∣∣∣∣∣∣∣∣
Lp(R+,ds/s)

(3.18)

and ∣∣∣∣∣∣∣∣s−θ ∣∣∣∣∣∣1x:w(x)>1/sf
∣∣∣∣∣∣
Lq(M)

∣∣∣∣∣∣∣∣
Lp(R+,ds/s)

(3.19)

define equivalent norms on the real interpolation space

(Lq(M), Lq(M,wq))θ,p.

The first step in the proof of Theorem 3.3.4 is a preliminary identification of
the real interpolation norm.

Proposition 3.3.6. Let all numerical parameters be as in the statement of The-
orem 3.3.4. Then for all f ∈ L0(X+) we have the equivalence∣∣∣∣∣∣f | (T p0,q

s0 , T p1,q
s1 )θ,pθ

∣∣∣∣∣∣ ' ∣∣∣∣∣∣x 7→ ∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ
∣∣∣∣∣∣∣∣∣∣∣∣

Lpθ (X)
.

(3.20)

Proof. We use the notation of the previous section. We have already noted that
the map H : T p,qs → Lp(X : Lqs(X+)) with Hf(x) = 1Γ(x)f is an isometry. Fur-
thermore, as shown in [3] (see the discussion preceding Proposition 3.12 there),
H(T p,qs ) is complemented in Lp(X : Lqs(X+)), and there is a common projection
onto these spaces. Therefore we have (by [89, Theorem 1.17.1.1] for example)∣∣∣∣∣∣f | (T p0,q

s0 , T p1,q
s1 )θ,pθ

∣∣∣∣∣∣ ' ∣∣∣∣∣∣Hf | (Lp0(X : Lqs0(X+)), Lp1(X : Lqs1(X+)))θ,pθ
∣∣∣∣∣∣ .

The Lions–Peetre result on real interpolation of Banach-valued Lebesgue spaces
(see for example [76, Remark 7]) then implies that∣∣∣∣∣∣f | (T p0,q

s0 , T p1,q
s1 )θ,pθ

∣∣∣∣∣∣ ' ∣∣∣∣∣∣Hf | (Lpθ(X : (Lqs0(X+), Lqs1(X+))θ,pθ)
∣∣∣∣∣∣ .

Since Hf(x) = 1Γ(x)f , this proves (3.20).
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Having proven Proposition 3.3.6, we can use Theorem 3.3.5 to provide some
useful characterisations of the real interpolation norm. For f ∈ L0(X+) and
a, b ∈ [0,∞], we define the truncation

fa,b := 1X×(a,b)f.

Note that in this theorem we allow for p0, p1 ≤ 1; we will use this range of
exponents in the next section.

Theorem 3.3.7. Suppose p0, p1, q ∈ (0,∞), s0 6= s1 ∈ R, and θ ∈ (0, 1), and
suppose that X is AD-regular of dimension n and unbounded. Let r ∈ (1,∞).
Then for f ∈ L0(X+) we have norm equivalences∣∣∣∣∣∣x 7→ ∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ

∣∣∣∣∣∣∣∣∣∣∣∣
Lpθ (X)

'
∣∣∣∣∣∣∣∣τn(s1−s0)(1−θ) ||fτ,∞||T pθ,qs1

∣∣∣∣∣∣∣∣
Lpθ (R+,dτ/τ)

(3.21)

'
∣∣∣∣∣∣∣∣τ−n(s1−s0)θ ||f0,τ ||T pθ,qs0

∣∣∣∣∣∣∣∣
Lpθ (R+,dτ/τ)

(3.22)

'r
∣∣∣∣∣∣∣∣(r−nkθ(s1−s0)

∣∣∣∣∣∣fr−k,r−k+1

∣∣∣∣∣∣
T
pθ,q
s0

)k∈Z
∣∣∣∣∣∣∣∣
`pθ (Z)

. (3.23)

Proof. First assume that s1 > s0. Let µqs0 be the measure on X+ given by

dµqs0(y, t) := t−qs0n
dµ(y) dt
V (y, t)t .

Since X is AD-regular of dimension n and unbounded, we have that ||f ||Lq(µqs0 ) '
||f ||Lqs0 (X+). Also define the weight w(y, t) := t−(s1−s0)n, so that wqµqs0 = µqs1 .

We will obtain the norm equivalence (3.23). For 1 < r < ∞ and k ∈ Z, we
have r−k < w(y, t) ≤ r−k+1 if and only if t ∈ [r(k−1)/n(s1−s0), rk/n(s1−s0)) (here we
use s1 > s0). Using the characterisation (3.17) of Theorem 3.3.5, and replacing r
with rn(s1−s0), for f ∈ L0(X+) we have∣∣∣∣∣∣x 7→ ∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ

∣∣∣∣∣∣∣∣∣∣∣∣
Lpθ (X)

'
(ˆ

X

∣∣∣∣∣∣1Γ(x)f
∣∣∣∣∣∣pθ

(Lq(µqs0 ),Lq(wqµqs0 ))θ,pθ
dµ(x)

)1/pθ

'

ˆ
X

∑
k∈Z

r−n(s1−s0)kθpθ
∣∣∣∣∣∣1Γ(x)frk−1,rk

∣∣∣∣∣∣pθ
Lq(µqs0 )

dµ(x)
1/pθ

'

∑
k∈Z

r−n(s1−s0)kθpθ
ˆ
X

Aq(V −s0frk−1,rk)(x)pθ dµ(x)
1/pθ

=
∣∣∣∣∣∣∣∣(r−n(s1−s0)kθ

∣∣∣∣∣∣frk−1,rk

∣∣∣∣∣∣
T
pθ,q
s0

)k∈Z
∣∣∣∣∣∣∣∣
`pθ (Z)

.
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This proves the norm equivalence (3.23) for all f ∈ L0(X+) when s1 > s0. If
s1 < s0, one simply uses that (Lqs0(X+), Lqs1(X+))θ,pθ = (Lqs1(X+), Lqs0(X+))1−θ,pθ

[22, Theorem 3.4.1(a)] to reduce the problem to the case where s0 < s1.
The equivalences (3.21) and (3.22) follow from the characterisations (3.18) and

(3.19) of Theorem 3.3.5 in the same way, with integrals replacing sums through-
out. We omit the details here.

Finally we can prove the main theorem: the identification of the real inter-
polants of weighted tent spaces as Z-spaces.

Proof of Theorem 3.3.4. Suppose f ∈ L0(X+). Using the characterisation (3.23)
in Theorem 3.3.7 with r = c1 > 1, and using aperture c0/c1 for the tent space
(making use of the change of aperture theorem [3, Proposition 3.21]), we have

∣∣∣∣∣∣f | (T p0,q
s0 , T p1,q

s1 )θ,pθ
∣∣∣∣∣∣pθ

'
∑
k∈Z

c
−n(s1−s0)kθpθ
1

ˆ
X

ˆ ck1

ck−1
1

ˆ
B(x,c0t/c1)

|t−ns0f(y, t)|q dµ(y)
V (y, t)

dt

t

pθ/q dµ(x)

'
ˆ
X

∑
k∈Z

c
−n(s1−s0)kθpθ
1 ·

·
ˆ ck1

ck−1
1

ˆ ck1

ck−1
1

ˆ
B(x,c0t/c1)

|t−ns0f(y, t)|q dµ(y)
V (y, t)

dt

t

pθ/q dr
r
dµ(x)

.
ˆ
X

∑
k∈Z

c
−n(s1−s0)kθpθ
1

ˆ ck1

ck−1
1

(̂ˆ
Ωc0,c1 (x,r)

|r−ns0f(y, t)|q dµ(y) dt
)pθ/q dr

r
dµ(x)

'
ˆ
X

ˆ ∞
0

r−n(s1−s0)θpθ

(̂ˆ
Ωc0,c1 (x,r)

|r−ns0f |q
)pθ/q dr

r
dµ(x)

=
¨
X+

(̂ˆ
Ωc0,c1 (x,r)

|r−nsθf |q
)pθ/q

dµ(x) dr
r

' ||f ||pθ
Z
pθ,q
sθ

(X;c0,c1) ,

using that B(x, c0t/c1)× (ck−1
1 , ck1) ⊂ Ωc0,c1(x, r) whenever r ∈ (ck−1

1 , ck1).
To prove the reverse estimate we use the same argument, this time using

that for r, t ∈ (2k−1, 2k) we have Ωc0,c1(x, t) ⊂ B(x, 2c0t)× (c−1
1 2k−1, c12k). Using
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aperture 2c0 for the tent space, we can then conclude that

||f ||pθ
Z
pθ,q
sθ

(X;c0,c1)

'
ˆ
X

∑
k∈Z

2−n(s1−s0)kθpθ
ˆ 2k

2k−1

(̂ˆ
Ωc0,c1 (x,r)

|r−ns0f |q
)pθ/q dr

r
dµ(x)

.
ˆ
X

∑
k∈Z

2−n(s1−s0)kθpθ ·

·
ˆ 2k

2k−1

ˆ c12k

c−1
1 2k−1

ˆ
B(x,2c0t)

|r−ns0f(y, t)|q dµ(y)
V (y, t)

dt

t

pθ/q dr
r
dµ(x)

'
ˆ
X

∑
k∈Z

2−n(s1−s0)kθpθ ·

·
ˆ c12k

c−1
1 2k−1

ˆ c12k

c−1
1 2k−1

ˆ
B(x,2c0t)

|r−ns0f(y, t)|q dµ(y)
V (y, t)

dt

t

pθ/q dr
r
dµ(x)

'
∣∣∣∣∣∣f | (T p0,q

s0 , T p1,q
s1 )θ,pθ

∣∣∣∣∣∣pθ .
This completes the proof of Theorem 3.3.4.

Remark 3.3.8. Note that this argument shows that∣∣∣∣∣∣∣∣(r−nkθ(s1−s0)
∣∣∣∣∣∣fr−k,r−k+1

∣∣∣∣∣∣
T
pθ,q
s0

)k∈Z
∣∣∣∣∣∣∣∣
`pθ (Z)

' ||f ||Zpθ,qsθ
(X;c0,c1)

whenever X is AD-regular of dimension n and unbounded, for all p0, p1 ∈ (0,∞),
c0 ∈ (0,∞), and c1 ∈ (1,∞). Therefore, since Theorem 3.3.7 also holds for this
range of exponents, to establish the identification (3.16) for p0, p1 ∈ (0,∞) it
suffices to extend Proposition 3.3.6 to p0, p1 ∈ (0,∞). We will do this in the next
section in the Euclidean case.

3.3.3 Real interpolation: the non-reflexive range

In this section we prove the following extension of Theorem 3.3.4. In what follows,
we always consider Rn as a metric measure space with the Euclidean distance and
Lebesgue measure.

Theorem 3.3.9. Suppose that p0, p1 ∈ (0,∞), q ∈ [1,∞), s0 6= s1 ∈ R, and
θ ∈ (0, 1). Then for any c0 ∈ (0,∞) and c1 ∈ (1,∞) we have the identification

(T p0,q
s0 (Rn), T p1,q

s1 (Rn))θ,pθ = Zpθ,q
sθ

(Rn; c0, c1) (3.24)

with equivalent quasi-norms, where p−1
θ = (1−θ)p−1

0 +θp−1
1 and sθ = (1−θ)s0+θs1.
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The main difficulty here is that vector-valued Bochner space techniques are
not available to us, as we would need to use quasi-Banach valued Lp spaces
with p < 1, and such a theory is not well-developed. Furthermore, although the
weighted tent spaces T p,qs embed isometrically into Lp(X : Lqs(X+)) in this range
of exponents, their image may not be complemented, and so we cannot easily
identify interpolants of their images.5 We must argue directly.

First we recall the so-called ‘power theorem’ [22, Theorem 3.11.6], which allows
us to exploit the convexity relations between weighted tent spaces. If A is a quasi-
Banach space with quasi-norm ||·|| and if ρ > 0, then ||·||ρ is also a quasi-norm
on A, and we denote the resulting quasi-Banach space by Aρ.

Theorem 3.3.10 (Power theorem). Let (A0, A1) be a compatible couple of quasi-
Banach spaces. Let ρ0, ρ1 ∈ (0,∞), η ∈ (0, 1), and r ∈ (0,∞], and define
ρ := (1− η)ρ0 + ηρ1, θ := ηρ1/ρ, and σ := rρ. Then we have

((A0)ρ0 , (A1)ρ1)η,r = ((A0, A1)θ,σ)ρ

with equivalent quasi-norms.

Before proving Theorem 3.3.9 we must establish some technical lemmas. Re-
call that we previously defined the spaces Lqs(X+) in (3.14).

Lemma 3.3.11. Suppose x ∈ X, α ∈ (0,∞), and let all other numerical parame-
ters be as in the statement of Theorem 3.3.9. Then for all cylindrically supported
f ∈ L0(X+) we have

K(α,1Γ(x)f ;Lqs0(X+), Lqs1(X+))
= inf

f=ϕ0+ϕ1

(
Aq(V −s0ϕ0)(x) + αAq(V −s1ϕ1)(x)

)
(3.25)

and

K(α,1Γ(x)f ;Lqs0(X+)p0 , Lqs1(X+)p1)
= inf

f=ϕ0+ϕ1

(
Aq(V −s0ϕ0)(x)p0 + αAq(V −s1ϕ1)(x)p1

)
(3.26)

where the infima are taken over all decompositions f = ϕ0 + ϕ1 in L0(X+) with
ϕ0, ϕ1 cylindrically supported.

5Harboure, Torrea, and Viviani [44] avoid this problem by embedding T 1 into a vector-
valued Hardy space H1. If we were to extend this argument we would need identifications of
quasi-Banach real interpolants of certain vector-valued Hardy spaces Hp for p ≤ 1, which is
very uncertain terrain (see Blasco and Xu [25]).
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Proof. We will only prove the equality (3.25), as the proof of (3.26) is essentially
the same.

Given a decomposition f = ϕ0 + ϕ1 in L0(X+), we have a corresponding de-
composition 1Γ(x)f = 1Γ(x)ϕ0 + 1Γ(x)ϕ1, with

∣∣∣∣∣∣1Γ(x)ϕ0

∣∣∣∣∣∣
Lqs0 (X+)

= Aq(V −s0ϕ0)(x)
and likewise for ϕ1. This shows that

K(α,1Γ(x)f ;Lqs0(X+), Lqs1(X+)) ≤ inf
f=ϕ0+ϕ1

(
Aq(V −s0ϕ0)(x) + αAq(V −s1ϕ1)(x)

)
.

For the reverse inequality, suppose that 1Γ(x)f = ϕ0 + ϕ1 in L0(X+), and
suppose f is essentially supported in a cylinder C. Multiplication by the char-
acteristic function 1Γ(x)∩C does not increase the quasi-norms of ϕ0 and ϕ1 in
Lqs0(X+) and Lqs1(X+) respectively, so without loss of generality we can assume
that ϕ0 and ϕ1 are cylindrically supported in Γ(x). Now let f = ψ0 + ψ1 be an
arbitrary decomposition in L0(X+), and define

ψ̃0 := 1Γ(x)ϕ0 + 1X+\Γ(x)ψ0,

ψ̃1 := 1Γ(x)ϕ1 + 1X+\Γ(x)ψ1.

Then f = ψ̃0 + ψ̃1 in L0(X+), and we have

Aq(V −s0ψ̃0)(x) = Aq(V −s0ϕ0)(x) =
∣∣∣∣∣∣1Γ(x)ϕ0

∣∣∣∣∣∣
Lqs0 (X+)

and likewise for ψ̃1. The conclusion follows from the definition of theK-functional.

Lemma 3.3.12. Suppose f ∈ Lqc(X+). Then Aqf is continuous.

Proof. Let f be essentially supported in the cylinder C := B(c, r) × (κ0, κ1).
First, for all x ∈ X we estimate

Aqf(x) ≤
(¨

C

|f(y, t)|q dµ(y)
V (y, t)

dt

t

)1/q

≤
(

inf
y∈B

V (y, κ0)
)−1/q

||f ||Lq(X+)

. ||f ||Lq(X+) ,

using the estimate (3.40) from the proof of Lemma 3.4.1.
For all x ∈ X we thus have

lim
z→x
|Aqf(x)−Aqf(z)| ≤ lim

z→x

(¨
X+
|1Γ(x) − 1Γ(z)||f(y, t)|q dµ(y)

V (y, t)
dt

t

)1/q

= 0
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by dominated convergence, since 1Γ(x) − 1Γ(z) → 0 pointwise as z → x, and since(¨
X+
|1Γ(x) − 1Γ(z)||f(y, t)|q dµ(y)

V (y, t)
dt

t

)1/q

. ||f ||Lq(X+) .

Therefore Aqf is continuous.

Having established these lemmas, we can prove the following (half-)extension
of Proposition 3.3.6.

Proposition 3.3.13. Let all numerical parameters be as in the statement of
Theorem 3.3.9. Then for all f ∈ Lqc(X+) the function

x 7→
∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ

∣∣∣∣∣∣ (3.27)

is measurable on X (using the discrete characterisation of the real interpolation
quasi-norm), and we have∣∣∣∣∣∣f | (T p0,q

s0 , T p1,q
s1 )θ,pθ

∣∣∣∣∣∣ & ∣∣∣∣∣∣x 7→ ∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ
∣∣∣∣∣∣∣∣∣∣∣∣

Lpθ (X)
.

(3.28)
We denote the quantity on the right hand side of (3.20) by

∣∣∣∣∣∣f | Ipθ,qs0,s1,θ

∣∣∣∣∣∣.
Proof. First we take care of measurability. Using Lemma 3.3.11, for x ∈ X we
write ∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ

∣∣∣∣∣∣pθ
=
∑
k∈Z

2−kpθθK
(
2k,1Γ(x)f ;Lqs0(X+), Lqs1(X+)

)pθ
=
∑
k∈Z

2−kpθθ inf
f=ϕ0+ϕ1

(
Aq(V −s0ϕ0)(x) + 2kAq(V −s1ϕ1)(x)

)pθ
where the infima are taken over all decompositions f = ϕ0 + ϕ1 in L0(X+)
with ϕ0 ∈ Lqs0(X+) and ϕ1 ∈ Lqs1(X+) cylindrically supported. By Lemma
3.3.12, we have that Aq(V −s0ϕ0) and Aq(V −s1ϕ1) are continuous. Hence for
each k ∈ Z and for every such decomposition f = ϕ0 + ϕ1 the function x 7→
Aq(V −s0ϕ0)(x) + 2kAq(V −s1ϕ1)(x) is continuous. The infimum of these functions
is then upper semicontinuous, therefore measurable.

Next, before beginning the proof of the estimate (3.28), we apply the power
theorem with A0 = T p0,q

s0 , A1 = T p1,q
s1 , ρ0 = p0, ρ1 = p1, and σ = pθ. Then we

have ρ = pθ, η = θpθ/p1, r = 1, and the relation pθ = (1− η)p0 + ηp1 is satisfied.
We conclude that

((T p0,q
s0 , T p1,q

s1 )θ,pθ)pθ ' ((T p0,q
s0 )p0 , (T p1,q

s1 )p1)θpθ/p1,1.
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Thus it suffices for us to prove∣∣∣∣∣∣f | ((T p0,q
s0 )p0 , (T p1,q

s1 )p1)θpθ/p1,1

∣∣∣∣∣∣ & ∣∣∣∣∣∣f | Ipθ,qs0,s1,θ

∣∣∣∣∣∣pθ (3.29)

for all f ∈ Lqc(X+).
We write∣∣∣∣∣∣f | ((T p0,q

s0 )p0 , (T p1,q
s1 )p1)θpθ/p1,1

∣∣∣∣∣∣
=
∑
k∈Z

2−kθpθ/p1K
(
2k, f ; (T p0,q

s0 )p0 , (T p1,q
s1 )p1

)
=
∑
k∈Z

2−kθpθ/p1 inf
f=ϕ0+ϕ1

(
||ϕ0||p0

T
p0,q
s0

+ 2k ||ϕ1||p1
T
p1,q
s1

)

=
∑
k∈Z

2−kθpθ/p1 inf
f=ϕ0+ϕ1

ˆ
X

Aq(V −s0ϕ0)(x)p0 + 2kAq(V −s1ϕ1)(x)p1 dµ(x)

≥
∑
k∈Z

2−kθpθ/p1

ˆ
X

inf
f=ϕ0+ϕ1

(
Aq(V −s0ϕ0)(x)p0 + 2kAq(V −s1ϕ1)(x)p1

)
dµ(x)

=
∑
k∈Z

2−kθpθ/p1

ˆ
X

K
(
2k,1Γ(x)f(x);Lqs0(X+)p0 , Lqs1(X+)p1

)
dµ(x) (3.30)

=
ˆ
X

∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+)p0 , Lqs1(X+)p1)θpθ/p1,1

∣∣∣∣∣∣ dµ(x)

'
ˆ
X

∣∣∣∣∣∣1Γ(x)f | (Lqs0(X+), Lqs1(X+))θ,pθ
∣∣∣∣∣∣pθ dµ(x) (3.31)

=
∣∣∣∣∣∣f | Ipθ,qs0,s1,θ

∣∣∣∣∣∣pθ
where again the infima are taken over cylindrically supported ϕ0 and ϕ1. The
equality (3.30) is due to Lemma 3.3.11. The equivalence (3.31) follows from the
power theorem. This completes the proof of Proposition 3.3.13.

As a corollary, we obtain half of the desired interpolation result.

Corollary 3.3.14. Let all numerical parameters be as in the statement of The-
orem 3.3.9, and suppose that X is AD-regular of dimension n and unbounded.

(T p0,q
s0 , T p1,q

s1 )θ,pθ ↪→ Zpθ,q
sθ

(X; c0, c1). (3.32)

Proof. This follows from Theorem 3.3.7, Remark 3.3.8, and the density of Lqc(X+)
in (T p0,q

s0 , T p1,q
s1 )θ,pθ (which follows from the fact that Lqc(X+) is dense in both T p0,q

s0

and T p1,q
s1 , which is due to Lemma 3.2.4).

We now prove the reverse containment in the Euclidean case. This rests on
a dyadic characterisation of the spaces Zp,q

s (Rn; c0, c1). A standard (open) dyadic
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cube is a set Q ⊂ Rn of the form

Q =
n∏
i=1

(2kxi, 2k(xi + 1)) (3.33)

for some k ∈ Z and x ∈ Zn. For Q of the form (3.33) we set `(Q) := 2k (the
sidelength of Q), and we denote the set of all standard dyadic cubes by D. For
every Q ∈ D we define the associated Whitney cube

Q := Q× (`(Q), 2`(Q)),

and we define G := {Q : Q ∈ D}. We write Rn+1
+ := (Rn)+ = Rn × (0,∞). Note

that G is a partition of Rn+1
+ up to a set of measure zero.

The following proposition is proven by a simple covering argument.

Proposition 3.3.15. Let p, q ∈ (0,∞), s ∈ R, c0 > 0 and c1 > 1. Then for all
f ∈ L0(Rn+1

+ ),

||f ||Zp,qs (Rn;c0,c1) 'c0,c1

∑
Q∈G

`(Q)n(1−ps)[|f |q]p/q
Q

1/p

,

where

[|f |q]Q :=
ˆ̂
Q

|f(y, t)|q dy dt.

As a consequence, we gain a convenient embedding.

Corollary 3.3.16. Suppose q ∈ (0,∞), p ∈ (0, q], and s ∈ R. Then

Zp,q
s (Rn) ↪→ T p,qs (Rn).
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Proof. We have

||f ||T p,qs (Rn) '

ˆ
Rn

(¨
Γ(x)
|t−nsf(y, t)|q dy dt

tn+1

)p/q
dx

1/p

≤

ˆ
Rn

∑
Q∈G

1Q∩Γ(x)6=∅(Q)
¨
Q

|t−nsf(y, t)|q dy dt
tn+1

p/q dx


1/p

'

ˆ
Rn

∑
Q∈G

1Q∩Γ(x)6=∅(Q)`(Q)−nsq[|f |q]Q

p/q dx


1/p

≤

ˆ
Rn

∑
Q∈G

1Q∩Γ(x) 6=∅(Q)`(Q)−nps[|f |q]p/q
Q
dx

1/p

(3.34)

=
∑
Q∈G

`(Q)−nps[|f |q]p/q
Q
|{x ∈ Rn : Γ(x) ∩Q 6= ∅}|

1/p

.

∑
Q∈G

`(Q)n(1−ps)[|f |q]p/q
Q

1/p

(3.35)

' ||f ||Zp,qs (X;c0,c1) ,

where (3.34) follows from p/q ≤ 1, (3.35) follows from

|{x ∈ Rn : Γ(x) ∩Q 6= ∅}| = |B(Q, 2`(Q))| . |Q| ' `(Q)n,

and the last line follows from Proposition 3.3.15. This proves the claimed em-
bedding.

It has already been shown by Barton and Mayboroda that the Z-spaces form
a real interpolation scale [21, Theorem 4.13], in the following sense. We will
stop referring to the parameters c0 and c1, as Proposition 3.3.15 implies that the
associated quasi-norms are equivalent.

Proposition 3.3.17. Suppose that all numerical parameters are as in the state-
ment of Theorem 3.3.9. Then we have the identification

(Zp0,q
s0 (Rn), Zp1,q

s1 (Rn))θ,pθ = Zpθ,q
sθ

(Rn).

Now we know enough to complete the proof of Theorem 3.3.9.

Proof of Theorem 3.3.9. First suppose that p0, p1 ∈ (0, 2]. By Corollary 3.3.16
we have

Zpj ,q
sj

(Rn) ↪→ T pj ,qsj
(Rn),
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for j = 0, 1, and so

(Zp0,q
s0 (Rn), Zp1,q

s1 (Rn))θ,pθ ↪→ (T p0,q
s0 (Rn), T p1,q

s1 (Rn))θ,pθ .

Therefore by Proposition 3.3.17 we have

Zpθ,q
sθ

(Rn) ↪→ (T p0,q
s0 (Rn), T p1,q

s1 (Rn))θ,pθ ,

and Corollary 3.3.14 then implies that we in fact have equality,

Zpθ,q
sθ

(Rn) = (T p0,q
s0 (Rn), T p1,q

s1 (Rn))θ,pθ .

This equality also holds for p0, p1 ∈ (1,∞) by Theorem 3.3.4. By reiteration,
this equality holds for all p0, p1 ∈ (0,∞). The proof of Theorem 3.3.9 is now
complete.

Remark 3.3.18. This can be extended to general unbounded AD-regular spaces
by establishing a dyadic characterisation along the lines of Proposition 3.3.15
(replacing Euclidean dyadic cubes with a more general system of ‘dyadic cubes’),
and then proving analogues of Corollary 3.3.16 and Proposition 3.3.17 using the
dyadic characterisation. The Euclidean applications are enough for our planned
applications, and the Euclidean argument already contains the key ideas, so we
leave further details to any curious readers.

3.3.4 Hardy–Littlewood–Sobolev embeddings

In this section we prove the following embedding theorem.

Theorem 3.3.19 (Weighted tent space embeddings). Suppose X is doubling.
Let 0 < p0 < p1 ≤ ∞, q ∈ (0,∞] and s0 > s1 ∈ R. Then we have the continuous
embedding

T p0,q
s0 ↪→ T p1,q

s1

whenever s1−s0 = δp0,p1. Furthermore, when p0 ∈ (0,∞], q ∈ (1,∞), and α > 0,
we have the embedding

T p0,q
s0 ↪→ T∞,qs1;α

whenever (s1 + α)− s0 = δp0,∞.

These embeddings can be thought of as being of Hardy–Littlewood–Sobolev-
type, in analogy with the classical Hardy–Littlewood–Sobolev embeddings of ho-
mogeneous Triebel–Lizorkin spaces (see for example [55, Theorem 2.1]).

The proof of Theorem 3.3.19 relies on the following atomic estimate. Note
that no geometric assumptions are needed here.
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Lemma 3.3.20. Let 1 ≤ p ≤ q ≤ ∞ and s0 > s1 ∈ R with s1 − s0 = δ1,p.
Suppose that a is a T 1,q

s0 -atom. Then a is in T p,qs1 , with ||a||T p,qs1
≤ 1.

Proof. Suppose that the atom a is associated with the ball B ⊂ X. When p 6=∞,
using the fact that B(x, t) ⊂ B whenever (x, t) ∈ T (B) and that −δ1,p > 0, we
have

||a||T p,qs1
=
∣∣∣∣∣∣Aq(V −s1a)

∣∣∣∣∣∣
Lp(B)

≤
∣∣∣∣∣∣V −δ1,p

∣∣∣∣∣∣
L∞(T (B))

∣∣∣∣∣∣Aq(V −s0a)
∣∣∣∣∣∣
Lp(B)

≤ µ(B)δp,1µ(B)δq,p ||a||T q,qs0

≤ µ(B)δp,1+δq,p+δ1,q

= 1,

where we used Hölder’s inequality with exponent q/p ≥ 1 in the third line.
When p = q =∞ the argument is simpler: we have

||a||T∞,∞s1
=
∣∣∣∣∣∣V −s0−δ1,∞a

∣∣∣∣∣∣
L∞(T (B))

≤
∣∣∣∣∣∣V −δ1,∞

∣∣∣∣∣∣
L∞(T (B))

∣∣∣∣∣∣V −s0a
∣∣∣∣∣∣
L∞(T (B))

≤ µ(B)δ∞,1µ(B)δ1,∞

= 1

using the same arguments as before (without needing Hölder’s inequality).

Now we will prove the embedding theorem. Here is a quick outline of the
proof. First we establish the first statement for p0 = 1 and 1 < p1 ≤ q by using
part (1) of Lemma 3.3.20. A convexity argument extends this to 0 < p0 < p1 ≤ q,
with q > 1. Duality then gives the case 1 < q ≤ p0 < p1 ≤ ∞, including when
p1 = ∞ and α 6= 0. A composition argument completes the proof with q > 1.
Finally, we use another convexity argument to allow for q ∈ (0, 1] (with p1 <∞).
To handle the second statement, we argue by duality again.

Proof of Theorem 3.3.19. The proof is split into six steps, corresponding to those
of the outline above.

Step 1. First suppose that f ∈ T 1,q
s0 and 1 ≤ p1 ≤ q. By the weighted atomic

decomposition theorem, we can write f = ∑
k λkak where each ak is a T 1,q

s0 -atom,
with the sum converging in T 1,q

s0 . By Lemma 3.3.20 we have

||f ||T p1,q
s1
≤ ||λk||`1(N) .
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Taking the infimum over all atomic decompositions yields the continuous embed-
ding

T 1,q
s0 ↪→ T p1,q

s1 (1 < p1 ≤ q ≤ ∞, s1 − s0 = δ1,p1). (3.36)

Step 2. Now suppose 0 < p0 < p1 ≤ q, s1 − s0 = δp0,p1 , and f ∈ T p0,q
s0 . Using

(3.36) and noting that q/p0 > 1 and

p0s1 − p0s0 = p0δp0,p1 = δ1,p1/p0 ,

we have

||f ||T p1,q
s1

=
∣∣∣∣∣∣fp0 | T p1/p0,q/p0

p0s1

∣∣∣∣∣∣1/p0

.
∣∣∣∣∣∣fp0 | T 1,q/p0

p0s0

∣∣∣∣∣∣1/p0

= ||f ||T p0,q
s0

,

which yields the continuous embedding

T p0,q
s0 ↪→ T p1,q

s1 (0 < p0 < p1 ≤ q ≤ ∞, q > 1, s1 − s0 = δp0,p1). (3.37)

Step 3. We now use a duality argument. Suppose 1 < q ≤ p0 < p1 ≤ ∞.
Define π0 := p′1, π1 := p′0, ρ := q′, σ0 := −s1, and σ1 := −s0, with s1− s0 = δp0,p1 .
Then

σ1 − σ0 = −s0 + s1 = δp0,p1 = δπ0,π1 ,

and so (3.37) gives the continuous embedding

T π0,ρ
σ ↪→ T π1,ρ

σ1 .

Taking duals results in the continuous embedding

T p0,q
s0 ↪→ T p1,q

s1 (1 < q ≤ p0 < p1 ≤ ∞, s1 − s0 = δp0,p1). (3.38)

Step 4. Now suppose that 0 < p0 ≤ q ≤ p1 ≤ ∞ and q > 1, again with
s1 − s0 = δp0,p1 . Then combining (3.37) and (3.38) gives continuous embeddings

T p0,q
s0 ↪→ T q,qs0+δp0,q

↪→ T p1,q
s0+δp0,q+δq,p1

= T p1,q
s1 . (3.39)

Step 5. Finally, suppose q ≤ 1, and choose M > 0 such that q/M > 1.
Then using a similar argument to that of Step 2, with Ms1 −Ms0 = Mδp0,p1 =
δp0/M,p1/M ,

||f ||T p1,q
s1

=
∣∣∣∣∣∣fM | T p1/M,q/M

Ms1

∣∣∣∣∣∣1/M
.
∣∣∣∣∣∣fM | T p0/M,q/M

Ms0

∣∣∣∣∣∣1/M
= ||f ||T p0,q

s
.
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All possible positions of q relative to 0 < p0 < p1 ≤ ∞ have thus been covered,
so the proof of the first statement is complete.

Step 6. For the second statement, we let (s1 + α)− s0 = δp0,∞, and first we
suppose that p0 ∈ (1,∞]. Let

π0 := (1 + α)−1 ∈ (0, 1),
π1 := p′0 ∈ (1,∞],
ρ = q′, σ0 = −s1, σ1 = −s0.

Then α = δ1,π0 = δp1,∞ and so we have

σ1 − σ0 = δp0,∞ − α = δ1,π1 − δ1,π0 = δπ0,π1 ,

which yields
T π0,ρ
σ0 ↪→ T π1,ρ

σ1 .

Taking duals yields
T p0,q
s0 ↪→ T∞,qs1,α ,

which completes the proof when p0 ∈ (1,∞]. One last convex reduction argument,
as in Step 2, completes the proof.

We remark that this technique also yields the embedding T∞,qs0,α0 ↪→ T∞,qs1,α1 when
(s1 + α1)− (s0 + α0) = 0, s0 > s1, and 0 ≤ α0 < α1.

Remark 3.3.21. The embeddings of Theorems 3.3.19, at least for p, q ∈ (1,∞),
also hold with Zp,q

s replacing T p,qs on either side (or both sides) of the embed-
ding. This can be proven by writing Zp,q

s as a real interpolation space between
tent spaces T p̃,qs̃ with p̃ near p and s̃ near s, applying the tent space embedding
theorems, and then interpolating again. These embeddings can also be proven
‘by hand’, even for p, q ≤ 1. We leave the details to any curious readers.

3.4 Deferred proofs

3.4.1 T p,∞–L∞ estimates for cylindrically supported func-
tions

The following lemma, which extends [3, Lemma 3.3] to the case q = ∞, is used
in the proof that T p,∞ is complete (see Proposition 3.2.4).
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Lemma 3.4.1. Suppose that X is doubling and let K ⊂ X+ be cylindrical. Then
for all p ∈ [1,∞],

||1Kf ||T p,∞ .K ||f ||L∞(K) .K ||f ||T p,∞ .

Proof. When p =∞ this reduces to

||1Kf ||L∞(X+) = ||f ||L∞(K) ≤ ||f ||L∞(X+) ,

which is immediate. Thus it suffices to prove the result for p = 1, for the general
case will then follow by interpolating between the L1(K)→ L1(X) and L∞(K)→
L∞(X) boundedness of the sublinear operator A∞. Write K ⊂ BK × (κ0, κ1) for
some ball BK = B(cK , rK) ⊂ X and 0 < κ0 < κ1 <∞.

To prove that ||1Kf ||T 1,∞ .K ||f ||L∞(K), observe that

||1Kf ||T 1,∞ ≤ ||f ||L∞(K) µ{x ∈ X : Γ(x) ∩K 6= ∅}

≤ ||f ||L∞(K) V (cK , rK + κ1)

because if x /∈ B(cK , rK + κ1) then Γ(x) ∩ (BK × (κ0, κ1)) = ∅. Note also that
V (cK , rK + κ1) is finite and depends only on K.

Now we will prove that ||f ||L∞(K) .K ||f ||T 1,∞ . First note that the doubling
property implies that for all R > 0 and for all balls B ⊂ X,

inf
x∈B

µ(B(x,R)) &X,R,rB µ(B). (3.40)

Indeed, if x ∈ B and R ≤ 2rB then

µ(B) ≤ µ(B(x,R(2rBR−1))) .X (2rBR−1)nµ(B(x,R)).

where n ≥ 0 is the doubling dimension ofX. If R > 2r(B) then since 2rBR−1 < 1,
we have µ(B) ≤ µ(B(x,R)).

Let (xj)j∈N be a countable dense subset of BK . Then we have

K =
⋃
j∈N

(Γ(xj) + κ0) ∩K.

By definition the set {(y, t) ∈ K : |f(y, t)| > 2−1 ||f ||L∞(K)} has positive measure,
so there exists j ∈ N such that |f(y, t)| > 2−1 ||f ||L∞(K) for (y, t) in some subset
of (Γ(xj) +κ0)∩K with positive measure. Since (Γ(xj) +κ0)∩K ⊂ Γ(x)∩K for
all x ∈ B(xj, κ0), we have that A∞(f)(x) ≥ 2−1 ||f ||L∞(K) for all x ∈ B(xj, κ0).
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Therefore, using (3.40),

||A∞f ||L1(X) ≥
1
2µ(B(xj, κ0)) ||f ||L∞(K)

&X,K µ(BK) ||f ||L∞(K)

'K ||f ||L∞(K) .

This completes the proof of the lemma.

3.4.2 T p,∞ atomic decomposition

As stated above, the atomic decomposition theorem for T p,∞ can be proven by
combining the arguments of Coifman–Meyer–Stein (who prove the result in the
Euclidean case) and Russ (who proves the atomic decomposition of T p,2(X) for
0 < p ≤ 1 when X is doubling).

First we recall a classical lemma (see for example [81, Lemma 2.2]), which
combines a Vitali-type covering lemma with a partition of unity. This is proven
by combining the Vitali-type covering of Coifmann–Weiss [34, Théorème 1.3] with
the partition of unity of Macías–Segovia [65, Lemma 2.16].

Lemma 3.4.2. Suppose that X is doubling, and let O be a proper subset of X
of finite measure. For all x ∈ X write r(x) := dist(x,Oc)/10. Then there exists
M > 0, a countable indexing set I, and a collection of points {xi}i∈I such that

• O = ∪i∈IB(xi, r(xi)),

• if i, j ∈ I are not equal, then B(xi, r(xi)/4) and B(xj, r(xj)/4) are disjoint,
and

• for all i ∈ I, there exist at most M indices j ∈ I such that B(xj, 5r(xj))
meets B(xi, 5r(xi)).

Moreover, there exist a collection of measurable functions {ϕi : X → [0, 1]}i∈I
such that

• suppϕi ⊂ B(xi, 2r(xi)),

• ∑
i ϕi = 1O (for each x ∈ X the sum ∑

i ϕi(x) is finite due to the third
condition above).

Now we can follow a simplified version of the argument of Russ, which is
essentially the argument of Coifman–Meyer–Stein with the partition of unity of
Lemma 3.4.2 replacing the use of the Whitney decomposition.
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Proof of Theorem 3.2.6, with q =∞. Suppose f ∈ T p,∞, and for each k ∈ Z
define the set

Ok := {x ∈ X : A∞f(x) > 2k}.

The sets Ok are open by lower semicontinuity of A∞f (Lemma 3.2.1), and the
function f is essentially supported in ∪k∈ZT (Ok) \ T (Ok+1). Thus we can write

f =
∑
k∈Z

1T (Ok)\T (Ok+1)f. (3.41)

Case 1: µ(X) =∞. In this case we must have µ(Ok) <∞ for each k ∈ Z, for
otherwise we would have ||A∞f ||Lp(X) = ∞ and thus f /∈ T p,∞. Hence for each
k ∈ Z there exist countable collections of points {xki }i∈Ik ⊂ Ok and measurable
functions {ϕki }i∈Ik as in Lemma 3.4.2. Combining (3.41) with ∑

i∈Ik ϕ
k
i = 1Ok

and T (Ok) ⊂ Ok × R+, we can write

f(y, t) =
∑
k∈Z

∑
i∈Ik

ϕki (y)1T (Ok)\T (Ok+1)(y, t)f(y, t)

=
∑
k∈Z

∑
i∈Ik

ãki (y, t).

Note that ∣∣∣∣∣∣ãki ∣∣∣∣∣∣L∞(X+)
≤ ess sup

(y,t)/∈T (Ok+1)
|f(y, t)| ≤ 2k+1, (3.42)

the second inequality following from T (Ok+1) = X+ \ (∪x/∈Ok+1Γ(x)) and the fact
that |f(y, t)| ≤ A∞f(x) ≤ 2k+1 for all x /∈ Ok+1 and (y, t) ∈ Γ(x).

Define
aki := 2−(k+1)µ(Bk

i )−1/pãki ,

where Bk
i := B(xki , 14r(xki )). We claim that aki is a T p,∞-atom associated with

the ball Bk
i . The estimate (3.42) immediately implies the size condition

∣∣∣∣∣∣aki ∣∣∣∣∣∣T∞,∞ ≤ µ(Bk
i )δp,∞ ,

so we need only show that aki is essentially supported in T (Bk
i ). To show this, it is

sufficient to show that if y ∈ B(xki , 2r(xki )) and d(y, (Ok)c) ≥ t, then d(y, (Bk
i )c) ≥

t. Suppose z /∈ Bk
i (such a point exists because µ(Bk

i ) < µ(X) =∞), ε > 0 and
u /∈ Ok such that

d(xki , u) < d(xki , (Ok)c) + ε = 10r(xki ) + ε.
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Then we have

d(y, z) + ε ≥ d(z, xki )− d(xki , y) + ε

≥ 12r(xki ) + ε

= 2r(xki ) + 10r(xki ) + ε

> d(y, xki ) + d(xki , u)
≥ d(y, u)
≥ t,

where the last line follows from u /∈ Ok and d(y, (Ok)c) ≥ t. Since z /∈ Bk
i and

ε > 0 were arbitrary, this shows that d(y, (Bk
i )c) ≥ t as required, which proves

that aki is a T p,∞-atom associated with Bk
i .

Thus we have
f(y, t) =

∑
k∈Z

∑
i∈Ik

λki a
k
i ,

where
λki = 2k+1µ(Bk

i )1/p.

It only remains to show that
∑
k∈Z

∑
i∈Ik
|λki |p . ||f ||

p
T p,∞ .

We estimate
∑
k∈Z

∑
i∈Ik
|λki |p =

∑
k∈Z

2(k+1)p ∑
i∈Ik

µ(Bk
i )

.X

∑
k∈Z

2(k+1)p ∑
i∈Ik

µ(B(xki , r(xki )/4)) (3.43)

≤
∑
k∈Z

2(k+1)pµ(Ok) (3.44)

. p
∑
k∈Z

ˆ 2k

2k−1
tp−1µ({x ∈ X : A∞f(x) > t}) dt

= ||A∞f ||pLp(X)

= ||f ||T p,∞ ,

using doubling in (3.43) and pairwise disjointness of the balls B(xki , r(xki )/4) in
(3.44). This completes the proof in the case that µ(X) =∞.

Case 2: µ(X) < ∞. In this case we may have Ok = X for some k ∈ Z, so
we cannot apply Lemma 3.4.2 as before. One can follow the argument of Russ
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[81, page 131], which shows that the partition of unity is not required for such k.
With this modification, the argument of the previous case still works. We omit
the details.
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Part II

Abstract Hardy–Sobolev and
Besov spaces for elliptic

boundary value problems with
complex L∞ coefficients
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Abstract

We establish a theory of Besov–Hardy–Sobolev spaces adapted to operators which
are bisectorial on L2, with bounded H∞ functional calculus on their ranges, and
satisfying off-diagonal estimates. We apply these spaces to the study of well-
posedness of boundary value problems associated with elliptic systems divA∇u =
0 with complex t-independent coefficients on the upper half-space, and with
boundary data in classical Besov–Hardy–Sobolev spaces.

In the range of exponents for which the Besov–Hardy–Sobolev spaces adapted
to the perturbed Dirac operator DB are equal to those adapted to the unper-
turbed operator D (where B is a bounded multiplier associated with A), we show
that well-posedness of a boundary value problem is equivalent to an associated
projection being an isomorphism. This is done by classifying all solutions to
Cauchy–Riemann systems associated with DB, or equivalently all conormal gra-
dients to solutions of divA∇u = 0, within certain weighted tent spaces and their
real interpolants. Our approach uses minimal assumptions on the coefficients A,
and in particular does not require De Giorgi–Nash–Moser estimates.

As an application, for real coefficient scalar equations, we extend known well-
posedness results for the Regularity problem with data in Hardy and Lebesgue
spaces to a large range of Besov–Hardy–Sobolev spaces by interpolation and du-
ality.
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Chapter 4

Introduction

4.1 Introduction and context

This main focus of this article is the well-posedness of boundary value problems
associated to divergence-form elliptic systems

LAu := divA∇u = 0, (4.1)

where the unknown is a Cm-valued function u on the upper half-space R1+n
+ :=

{(t, x) ∈ R1+n : t > 0}. We work in ambient dimension 1 + n ≥ 2, with m ≥ 1.
The special case m = 1 corresponds to a scalar equation rather than a system.

The gradient operator ∇ sends Cm-valued functions f to Cm(1+n)-valued func-
tions (Cm-valued vector fields) ∇f by considering f = (f j)mj=1 as an m-tuple of
C-valued functions, and acting as the usual gradient operator componentwise.
The divergence operator div is defined similarly, sending Cm(1+n)-valued func-
tions to Cm-valued functions. These differential operators are interpreted in the
weak (distributional) sense. Vectors v ∈ Cm(1+n) are split into transversal and
tangential parts v = (v⊥, v‖) according to the splitting

Cm(1+n) = Cm ⊕ Cmn, (4.2)

and likewise functions f with codomain Cm(1+n) can be split into transversal and
tangential parts f = (f⊥, f‖), with codomains Cm and Cmn respectively. We write
∇‖ and div‖ for the corresponding tangential restrictions of ∇ and div.

Throughout the entire article we assume (unless explicitly stated otherwise)
that the coefficient matrix A ∈ L∞(Rn+1

+ : L(Cm(1+n))) is bounded, measur-
able, complex, and t-independent, meaning that A(t, x) = A(x) for almost every
(t, x) ∈ R1+n

+ . Thus we may identify A as an element of L∞(Rn : L(Cm(1+n))).
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Furthermore we assume that A is strictly accretive on curl-free vector fields, in
the sense that there exists κ > 0 such that

Re
ˆ
Rn

(A(x)f(x), f(x)) dx ≥ κ ||f ||22 (4.3)

for all f ∈ L2(Rn : Cm(1+n)) such that curl‖(f‖) = 0. The round bracket in the
integrand above is the usual Hermitean inner product on Cm(1+n). By curl‖(f‖) =
0 we mean that

∂jfk = ∂kfj (1 ≤ k, j ≤ n, k 6= j),

with (weak) partial derivatives acting componentwise on Cm-valued functions.
The strict accretivity condition (4.3) is weaker than the usual notion of pointwise
strict accretivity

Re(A(x)v, v) ≥ κ|v|2 (v ∈ Cm(1+n), x ∈ Rn)

unless m = 1, in which case these two notions are equivalent (see [8, §2]).
We always consider weak solutions to (4.1). That is, we say that a function

u ∈ W 2
1,loc(Rn : Cm) solves (4.1) if for all ϕ ∈ C∞0 (R1+n

+ : Cm) we have
¨

R1+n
+

(A(x)∇u(t, x),∇ϕ(t, x)) dx dt = 0.

4.1.1 Formulation of boundary value problems

One can formulate various boundary value problems associated with the equation
LAu = 0. First, for 1 < p < ∞, we formulate the Lp-Dirichlet problem for LA,
denoted by (DH)p0,A:

(DH)p0,A :


LAu = 0 in R1+n

+ ,

limt→0 u(t, ·) = f ∈ Lp(Rn : Cm),
||N∗u||Lp . ||f ||Lp ,

This should be read:

for all f ∈ Lp(Rn : Cm),
there exists u ∈ W 2

1,loc(R1+n
+ : Cm) solving LAu = 0,

with u→ f in Lp (the boundary condition),
such that ||N∗u||p . ||f ||p (the interior estimate).

Here N∗ is the non-tangential maximal function

N∗u(x) := sup
(t,y)∈Γ(x)

|u(t, y)|,
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where Γ(x) is the cone in R1+n
+ based at x (defined in Subsection 5.1.2). We say

that the problem (DH)p0,A is well-posed if for all f ∈ Lp(Rn : Cm) there exists a
unique u satisfying these conditions.

For all of the boundary value problems that we consider, well-posedness is
defined analogously: for all boundary data, there must exist a unique solution
(modulo constants, for Regularity and Neumann problems) which satisfies the
stated conditions.

Next, for n/(n+1) < p <∞, we formulate the Hp-Regularity problem for LA:

(RH)p0,A :


LAu = 0 in R1+n

+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ Hp(Rn : Cmn),∣∣∣∣∣∣Ñ∗(∇u)
∣∣∣∣∣∣
Lp

.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣

Hp
,

where Ñ∗u is the modified non-tangential maximal function

Ñ∗u(x) := sup
(t,y)∈Γ(x)

(̂ˆ
Ω(t,y)

|u(τ, ξ)|2 dτ dξ
)1/2

(4.4)

(the Whitney region Ω(t, y) is defined in Subsection 5.1.3), and where Hp(Rn :
Cmn) is the (Cmn-valued) real Hardy space, which may be identified with Lp(Rn :
Cmn) when p > 1.

Remark 4.1.1. If f is a distribution with ∇‖f ∈ Hp(Rn : Cmn), then f may be
identified with an element of Ḣp

1 (Rn : Cm) (the Cm-valued homogeneous Hardy–
Sobolev space of order 1, defined in Subsection 5.1.5), and the boundary condition
limt→0∇‖u(t, ·) = ∇‖f ∈ Hp(Rn : Cmn) is equivalent to the condition

lim
t→0

u(t, ·) = f ∈ Ḣp
1 (Rn : Cm).

Therefore, by considering potentials rather than tangential gradients, we can see
the Hp-Regularity problem as a kind of Ḣp

1 -Dirichlet problem. Conversely, by
shifting viewpoint from functions to their tangential gradients, the Lp-Dirichlet
problem (DH)p0,A can be seen as a kind of Ḣp

−1-Regularity problem. It will be
technically convenient for us to consider Regularity problems rather than Dirichlet
problems.

For n/(n+ 1) < p <∞, we also formulate the Hp-Neumann problem for LA,

(NH)p0,A :


LAu = 0 in R1+n

+ ,

limt→0 ∂νAu(t, ·) = ∂νAf ∈ Hp(Rn : Cm),∣∣∣∣∣∣Ñ∗(∇u)
∣∣∣∣∣∣
Lp

. ||∂νAf ||Hp ,

107



where the A-conormal derivative ∂νA of u is given by

∂νAu(t, ·) = −e0 · A∇u(·, t), (4.5)

where −e0 is the normal vector to Rn ⊂ R1+n, relative to R1+n
+ .

The boundary value problems (DH)p0,A, (RH)p0,A, and (NH)p0,A are all problems
of order zero:1 in each of these problems, the interior estimates are in terms of
boundary data in either the Lebesgue space Lp or the Hardy space Hp. One can
also formulate Regularity and Neumann problems of order −1.

For 1 < p < ∞, the Ḣp
−1-Regularity problem, which is similar to the Lp-

Dirichlet problem but with a different interior estimate2 and a decay condition
at infinity (see Remark 4.1.1), is

(RH)p−1,A :



LAu = 0 in R1+n
+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ Ḣp
−1(Rn : Cmn),

limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||T p−1

.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣

Ḣp
−1
.

Here Z ′(Rn : Cmn) is the space of Cmn-valued tempered distributions modulo
polynomials; this is the natural space in which all homogeneous Hardy–Sobolev
and Besov spaces are embedded. We can enlargen the range of exponents to
‘p ≥ ∞’; this is done rigorously by using BMO and the homogeneous Hölder
spaces Λ̇α. For 0 < α < 1 we define

(RH)(∞,α)
−1,A :



LAu = 0 in R1+n
+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ Λ̇α−1(Rn : Cmn),
limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||T∞−1;α

.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣Λ̇α−1

,

and furthermore, with α = 0,

(RH)(∞,0)
−1,A :



LAu = 0 in R1+n
+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ ˙BMO−1(Rn : Cmn),
limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||T∞−1;0

.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣ ˙BMO−1

.

1We use the term ‘order’ here, since there is no confusion with this ‘order’ and the fact
that these are boundary value problems for ‘second-order’ elliptic equations. We could use the
term ‘regularity’ instead, but this would probably cause more ambiguity with the Regularity
problem.

2It is known that
∣∣∣∣∣∣Ñ∗u∣∣∣∣∣∣

Lp
. ||∇u||Tp

−1
in the range of p that we shall deal with, but the

converse is in general not known.
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The spaces ˙BMO−1 and Λ̇α−1 are best considered as the homogeneous Triebel–
Lizorkin space Ḟ∞,2−1 and Besov spaces Ḃ∞,∞α−1 respectively, as their negative or-
ders prevent traditional (i.e. non-Littlewood–Paley) characterisations in terms of
smoothness. For these problems the limit in the boundary condition is imposed
in the weak-star topology.

With the same ranges of p and α, we also define order −1 Neumann problems
(NH)p−1,A, (NH)(∞,α)

−1,A , and (NH)(∞,0)
−1,A in the same way, with tangential gradients

∇‖ replaced by A-conormal derivatives ∂νA in the boundary condition (we keep
∇‖ in the decay condition at infinity).

Note that in the ‘order −1’ problems above, we impose a tent space estimate
on ∇u rather than a nontangential maximal function estimate. The weighted
tent spaces T p−1 and T∞−1;0 are defined in Subsection 5.1.2. We also impose a
decay condition on the tangential gradient ∇‖u at infinity. For p sufficiently
small this is implied by the other conditions; we remark that if LA satisfies a De
Giorgi–Nash–Moser condition (see (7.51)) then it is implied for all p < ∞, and
also for some range of α > 0. (see Lemma 7.2.1).

Remark 4.1.2. We have not imposed any nontangential convergence of solutions
to boundary data in the problems above. This is because the classification theo-
rems of Auscher and Mourgoglou, in particular [15, Corollaries 1.2 and 1.4], auto-
matically yield almost everywhere (a.e.) non-tangential convergence of Whitney
averages (of either the solution or its conormal gradient, whichever is relevant)
to the boundary data. When the operator LA satisfies a De Giorgi–Nash–Moser
condition (see (7.51)) this can be improved to a.e. non-tangential convergence
without Whitney averages.

Let us summarise the problems we have introduced so far. There are Dirichlet
problems of order 0 and 1 (seeing the Hp-Regularity problem as a Ḣp

1 -Dirichlet
problem), Regularity problems of order 0 and −1, and Neumann problems of
order 0 and −1.

In their recent monograph [21], Barton and Mayboroda consider problems
of intermediate order. They formulate Dirichlet problems of order θ ∈ (0, 1)
and Neumann problems of order θ ∈ (−1, 0) as follows.3 For 0 < θ < 1 and

3We have a different indexing convention, where we index our problems according to the
order of the boundary function space used in the interior estimate. Barton and Mayboroda
refer to (NB)pθ−1,A as (N)pθ,A. Also, Barton and Mayboroda only consider scalar equations, i.e.
the case m = 1.
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n/(n+ θ) < p ≤ ∞,

(DB)pθ,A :


LAu = 0 in R1+n

+ ,

Tru = f ∈ Ḃp,p
θ (Rn : Cm)

||∇u||L(p,θ,2) . ||f ||Ḃp,p
θ
,

and

(NB)pθ−1,A :


LAu = 0 in R1+n

+ ,

∂νAu|∂R1+n
+

= ∂νAf ∈ Ḃ
p,p
θ−1(Rn : Cm)

||∇u||L(p,θ,2) . ||∂νAf ||Ḃp,p
θ−1

.

The Besov spaces Ḃp,p
θ are defined in Subsection 5.1.5. The spaces L(p, θ, 2) are

defined by the norms

||F ||L(p,θ,2) :=
¨

R1+n
+

(̂ˆ
Ω(t,x)

|τ 1−θF (τ, ξ)|2 dξ dτ
)p/2

dx
dt

t

1/p

with the usual modification when p = ∞. We will refer to these spaces as Z-
spaces starting from Subsection 5.1.3 (the letter L already being overused), with
an indexing convention such that Zp

θ = L(p, θ+1, 2). The boundary condition for
(DB)pθ,A is phrased in terms of the trace operator, which is shown to be bounded
from Ẇ (p, θ, 2) (the space of functions whose gradients are in L(p, θ, 2)) to Ḃp,p

θ

when p > n/(n+ θ) [21, Theorem 3.9]. A similar argument is used to define the
boundary conormal derivative ∂νAu|∂R1+n

+
.

As we stated earlier, it will be technically convenient for us to consider Reg-
ularity problems rather than Dirichlet problems. We would also prefer to stick
with problems of order between −1 and 0. To this end we define, for −1 < θ < 0
and p such that n/(n+ θ + 1) < p ≤ ∞,

(RB)pθ,A :



LAu = 0 in R1+n
+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ Ḃp,p
θ (Rn : Cmn)

limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||Zp

θ
.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣

Ḃp,p
θ

and

(NB)pθ,A :



LAu = 0 in R1+n
+ ,

limt→0 ∂νAu(t, ·) = ∂νAf ∈ Ḃ
p,p
θ (Rn : Cm)

limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||Zp

θ
. ||∂νAf ||Ḃp,p

θ
,
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replacing the trace conditions with limiting conditions for consistency with the
‘endpoint order’ problems that we have already defined,4 writing Zp

θ instead of
L(p, θ+1, 2), and including a decay condition at infinity. When p =∞ we impose
the boundary condition in the weak-star topology. If we omit the decay condition
at infinity, the Regularity problem (RB)pθ,A is equivalent to the Dirichlet problem
(DB)pθ+1,A defined above by an argument similar to that of Remark 4.1.1, and
the Neumann problem (NB)pθ,A is simply a rewriting of the previously-defined
Neumann problem.

The Besov spaces Ḃp,p
θ with θ ∈ (−1, 0) are not the only function spaces

situated between Hp
0 and Ḣp

−1. One can also consider the Hardy–Sobolev spaces
Ḣp
θ with θ ∈ (−1, 0). These are defined in Subsection 5.1.5; they may be identified

with the homogeneous Triebel–Lizorkin spaces Ḟ p,2
θ , whereas the Besov spaces

Ḃp,p
θ may be identified with Ḟ p,p

θ when p <∞. We use Hardy–Sobolev spaces to
formulate the following Regularity and Neumann problems, with −1 < θ < 0 and
n/(n+ θ + 1) < p <∞,

(RH)pθ,A :



LAu = 0 in R1+n
+ ,

limt→0∇‖u(t, ·) = ∇‖f ∈ Ḣp
θ (Rn : Cmn)

limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||T p

θ
.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣

Ḣp
θ

and

(NH)pθ,A :



LAu = 0 in R1+n
+ ,

limt→0 ∂νAu(t, ·) = ∂νAf ∈ Ḣ
p
θ (Rn : Cm)

limt→∞∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)
||∇u||T p

θ
. ||∂νAf ||Ḣp

θ
.

Furthermore, for −1 < θ < 0 we formulate ‘endpoint’ problems (RH)∞θ,A and
(NH)∞θ,A by replacing Ḣp

θ with the homogeneous BMO-Sobolev space ˙BMOθ,
which may be identified with the homogeneous Triebel–Lizorkin spaces Ḟ∞,2θ .
In this case the boundary condition is imposed in the weak-star topology. In
contrast with the boundary value problems with Besov space data, in these cases
there is no trace theorem for the function space defined by ∇u ∈ T pθ (this is
also the case for θ = −1 and θ = 0 with the spaces defined by ∇u ∈ T p−1 and
Ñ∗(∇u) ∈ Lp respectively).

Let us briefly summarise the Regularity and Neumann problems that we have
introduced. At order zero we have problems (RH)p0,A and (NH)p0,A, which have

4The trace conditions may be removed by invoking [21, Theorem 6.3], the trace theorem for
functions with gradients in Zpθ .
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boundary data in Hp and a modified non-tangential maximal estimate on the
interior. At order −1 we have (RH)p−1,A and (NH)p−1,A, with boundary data in
Ḣp
−1 and a T p−1 interior estimate, and also (RH)(∞,α)

−1,A and (NH)(∞,α)
−1,A with boundary

data in Λ̇α−1 (or ˙BMO−1 when α = 0) and a T∞−1;α interior estimate. In between,
i.e. for order θ ∈ (−1, 0), we have (RB)pθ,A and (NB)pθ,A with boundary data in
Ḃp,p
θ , and (RH)pθ,A and (NH)pθ,A with boundary data in Ḣp

θ . In these cases the
interior estimates are in Zp

θ and T pθ respectively. For all problems of negative
order we also impose a decay condition on ∇‖u(t, ·) as t→∞ in the space Z ′ of
tempered distributions modulo polynomials. In many cases this decay condition
is redundant (see Lemma 7.2.1).

Note that for p = 2 and for all s, the problems (RH)2
s,A and (RB)2

s,A (and
likewise for Neumann problems) coincide, since Ḣ2

s = Ḃ2,2
s and Z2

s = T 2
s .

4.1.2 The first-order approach: perturbed Dirac opera-
tors and Cauchy–Riemann systems

Let D denote the differential operator on Cm(1+n)-valued functions given by

D :=
 0 div‖
−∇‖ 0


with respect to the transversal/tangential splitting (4.2) of Cm(1+n). We refer toD
as a Dirac operator, becauseD2 acts as the tangential Laplacian ∆‖ on transversal
functions. Suppose that B ∈ L∞(Rn : L(Cm(1+n))) is a bounded coefficient
matrix satisfying the same assumptions as those we previously assumed on A:
boundedness, measurability, complexity, t-independence, and strict accretivity
on curl-free vector fields. We refer to the operator DB as a perturbed Dirac
operator.

The Cauchy–Riemann system associated with DB is the first-order partial
differential system

(CR)DB :

 ∂tF +DBF = 0 in R1+n
+ ,

curl‖ F‖ = 0 in R1+n
+

(4.6)

interpreted in the weak (L2
loc) sense: that is, we say that F ∈ L2

loc(R1+n
+ : Cm(1+n))

solves (CR)DB if for all test functions ϕ ∈ C∞c (R1+n
+ : Cm(1+n)),

¨
R1+n

+

(F (t, x), ∂tϕ(t, x)) dx dt =
¨

R1+n
+

(F (t, x), B∗(x)Dϕ(t, x)) dx dt
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and for all ψ ∈ C∞c (R1+n
+ : Cm) and 1 ≤ j, k ≤ n, j 6= k,

¨
R1+n

+

(Fk(t, x), ∂jψ(t, x)) dx dt = −
¨

R1+n
+

(Fj(t, x), ∂kψ(t, x)) dx dt.

The condition curl‖ F‖ = 0 is equivalent to the condition F ∈ R(D), the range
of D (considered as acting on Cm(1+n)-valued distributions modulo polynomials),
and so the Cauchy–Riemann system (CR)DB may be considered as an evolution
equation in the space R(D).

The first-order approach to boundary value problems for elliptic systems
LAu = 0 exploits a correspondence between these elliptic systems and Cauchy–
Riemann systems (CR)DB. Recall that A ∈ L∞(Rn : L(Cm(1+n))). Write A in
matrix form with respect to the transversal/tangential splitting (4.2) of Cm(1+n)

as

A =
A⊥⊥ A⊥‖

A‖⊥ A‖‖

 , (4.7)

and using this representation of A define auxiliary matrices

A :=
A⊥⊥ A⊥‖

0 I

 and A :=
 I 0
A‖⊥ A‖‖


in L∞(Rn : L(Cm(1+n))). Strict accretivity of A implies that A⊥⊥ is invertible in
L∞(Rn : L(Cm)), and so A is invertible in L∞(Rn : L(Cm(1+n))). Thus we may
define

Â := AA
−1
.

The transformed coefficient matrix Â is bounded and strictly accretive on curl-
free vector fields as in (4.3), and ˆ̂

A = A [8, Proposition 3.2].
The A-conormal gradient ∇Au of a function u : R1+n

+ → Cm is defined by

∇Au =
∂νAu
∇‖u

 , (4.8)

where the A-conormal derivative ∂νA is defined in (4.5). Notice that the compo-
nents of ∇Au are exactly the quantities appearing in the boundary conditions of
the Regularity and Neumann problems. This explains our preference for Regu-
larity problems over Dirichlet problems.

The following theorem, due to Auscher, Axelsson (Rosén), and McIntosh, pro-
vides a bridge between elliptic equations LAu = 0 and Cauchy–Riemann systems
(CR)DB. See [8, §3], [7, Proposition 4.1], [79, §2], and [15, Lemma 7.1] for proofs
and discussions.
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Theorem 4.1.3 (Auscher–Axelsson–McIntosh). Let A be as above, and let B =
Â. If u solves LAu = 0, then the conormal gradient ∇Au solves the Cauchy–
Riemann system (CR)DB. Conversely, if F solves (CR)DB, then there exists a
function u, unique up to an additive constant, such that LAu = 0 and F = ∇Au.

Therefore in our consideration of elliptic systems we may focus on Cauchy–
Riemann systems if they are more useful. The principal advantage of Cauchy–
Riemann systems over elliptic equations is that the Cauchy equation ∂tF +
DBF = 0 can be solved by semigroup methods. We will sketch how this is
done, following Auscher, Axelsson, and McIntosh [8] and Auscher and Axelsson
[7]. This approach is the foundation for the rest of the article.

Consider D as an unbounded operator on L2 := L2(Rn : Cm(1+n)) with natural
domain, and consider B as a multiplication operator on L2. Then, still assuming
strict accretivity of B on R(D),5 the composition DB is bisectorial and has
bounded H∞ functional calculus on its range [8, Proposition 3.3 and Theorem
3.4].6 This is a highly non-trivial fact: it is part of the framework developed by
Axelsson, Keith, and McIntosh [19], which encompasses the solution of the Kato
square root problem [9].

Using the direct sum decomposition

L2 = N (DB)⊕R(DB)

which follows from bisectoriality of DB, along with the bounded H∞ functional
calculus associated with DB on R(DB), we obtain a decomposition

L2 = N (DB)⊕R(DB)+ ⊕R(DB)−.

The positive and negative spectral subspaces R(DB)± are the images of R(DB)
under the projections χ±(DB), which are defined via the functions χ± : C\ iR→
{−1, 1} given by

χ±(z) := 1z:±Re(z)>0;

χ+ and χ− are the characteristic functions of the right and left half-plane respec-
tively. They are bounded and holomorphic on every bisector, so they fall within
the scope of the H∞ functional calculus.

On the positive spectral subspace R(DB)+ we can construct a strongly con-
tinuous semigroup (e−tDB)t>0 via the family of functions (z 7→ e−tz)t>0, which

5R(D) denotes the closure of the range of D in L2(Rn : Cm(1+n)). We can obviously restrict
attention to such functions when defining ‘strict accretivity on curl-free vector fields’.

6These notions are properly discussed in Section 5.2.1.
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are holomorphic and bounded on the right half-plane. For each f ∈ R(DB)+ we
may construct a generalised Cauchy operator C+

DBf , defined by

(C+
DBf)(t, x) := (e−tDBf)(x).

The following theorem is a combination of parts of [8, Theorem 2.3] and [7,
Corollary 8.4].

Theorem 4.1.4 (Auscher–Axelsson–McIntosh). If f ∈ R(DB)+, then C+
DBf

solves (CR)DB, with∣∣∣∣∣∣Ñ∗(C+
DBf)

∣∣∣∣∣∣
2
' ||f ||2 and lim

t→0
(C+

DBf)(t, ·) = f in L2.

Conversely, if F solves (CR)DB and Ñ∗(F ) ∈ L2, then F = C+
DBf for a unique

f ∈ R(DB)+.

By combining this with Theorem 4.1.3, we obtain a new characterisation of
well-posedness of the boundary value problems (RH)2

0,A and (NH)2
0,A. Consider

the H2-Regularity problem (RH)2
0,A and let B = Â. A function u solves LAu = 0

with Ñ∗(∇u) ∈ L2 (∇u and ∇Au are interchangeable in this assumption) if and
only if ∇Au = C+

DBg for some g ∈ R(DB)+, and therefore ∇‖u(t, ·) = (C+
DBg)(t)‖

and limt→0∇‖u(t, ·) = g‖. Hence (RH)2
0,A is well-posed if and only if g 7→ g‖ is an

isomorphism from R(DB)+ to L2(Rn : Cmn)∩N (curl‖). By the same argument,
(NH)2

0,A is well-posed if and only if g 7→ g⊥ is an isomorphism from R(DB)+ to
L2(Rn : Cm).

By characterising solutions to (CR)DB within various function spaces, we can
reduce well-posedness of corresponding Regularity and Neumann problems to
proving that the transversal and tangential restriction maps are isomorphisms
between certain function spaces ‘on the boundary’. However, in this section we
only described how to handle boundary value problems of order 0 with L2 bound-
ary data. We shall extend this technique to boundary value problems of more
general order, and beyond L2.

Adapted function spaces

‘Adapted’ Hardy spaces Hp
L, with respect to which some operator L has good

properties (such as bounded H∞ functional calculus), have been developed in
various contexts. For example, Hardy spaces of differential forms on Rieman-
nian manifolds were constructed by Auscher, McIntosh, and Russ [13] (these are
adapted to the Hodge-Dirac operator d + d∗ on the de Rham complex); Hardy
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spaces adapted to non-negative self-adjoint operators satisfying Davies–Gaffney
estimates on spaces of homogeneous type were studied by Hofmann, Lu, Mitrea,
Mitrea, and Yan [48] (generalising the work of Auscher, McIntosh, and Russ);
Hardy spaces adapted to divergence-form elliptic operators on Rn were devel-
oped by Hofmann and Mayboroda [49] and also McIntosh [50]. This is a very
small sample of the work that has been done.

Hardy spaces Hp
DB and Sobolev spaces Wp

−1,DB adapted to perturbed Dirac
operators DB were introduced by Auscher and Stahlhut [16] (see also Stahlhut’s
thesis [84]).7 These spaces consist of Cm(1+n)-valued functions (at least formally);
the simplest case is

H2
DB = R(DB) ⊂ L2 = L2(Rn : Cm(1+n)).

The bounded H∞ calculus of DB on H2
DB extends by boundedness to Hp

DB and
Wp
−1,DB, yielding spectral decompositions

Hp
DB = Hp,+

DB ⊕Hp,−
DB, Wp

−1,DB = Wp,+
−1,DB ⊕Wp,−

−1,DB.

Furthermore, the Cauchy operator C+
DB on R(DB)+ extends to operators on

Hp,+
DB and Wp,+

−1,DB, both of which we denote by C+
DB.

The main application of these spaces, which incorporates results from both
[16] and the subsequent work of Auscher and Mourgoglou [15], is a classification of
solutions to the Cauchy–Riemann system (CR)DB with various Lp-type interior
estimates, for p such that certain DB-adapted spaces may be identified with
D-adapted spaces.8

Theorem 4.1.5 (Auscher–Mourgoglou–Stahlhut). Let 1 < p < ∞ be such that
Hp
DB ' Hp

D.

(i) If f ∈ Hp,+
DB, then C+

DBf solves (CR)DB, with∣∣∣∣∣∣Ñ∗(C+
DBf)

∣∣∣∣∣∣
p
' ||f ||Hp and lim

t→0
C+
DBf(t) = f in Hp.

Conversely, if F solves (CR)DB and Ñ∗F ∈ Lp, then F = C+
DBf for some

f ∈ Hp,+
DB.

7We will not define Hp
DB here, but only mention that it is defined, along with more general

spaces, in Section 6.1.
8For simplicity we only state results for 1 < p < ∞ here. Corresponding results for p ≤ 1

and p =∞ (BMO and Hölder spaces) are also available.
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(ii) If f ∈Wp,+
−1,DB, then C+

DBf solves (CR)DB, with∣∣∣∣∣∣C+
DBf

∣∣∣∣∣∣
T p−1
' ||f ||Ẇ p

−1
and lim

t→0
C+
DBf(t) = f in Ẇ p

−1.

Conversely, if F ∈ T p−1 solves (CR)DB and limt→∞ F (t)‖ = 0 in Z ′(Rn),
then F = C+

DBf for some f ∈Wp,+
−1,DB.

Furthermore, Auscher and Stahlhut [16, Theorem 5.1] show that for every
B there exists an open interval I0(H, DB) 3 2 such that Hp

DB ' Hp
D for all

p ∈ I0(H, DB), thus yielding a nontrivial range of exponents for which Theorem
4.1.5 applies.

As we described in the p = 2 case, Theorem 4.1.5 implies a characterisation of
well-posedness of various Regularity and Neumann problems, both of order 0 and
order −1, in terms of certain transversal and tangential restriction maps being
isomorphisms. We will state our extension of this result in Theorem 4.1.7.

The main goal of this article is to extend Theorem 4.1.5 to order
s ∈ (−1, 0), incorporating both Hardy–Sobolev spaces and Besov spaces.
To this end, we introduce Hardy–Sobolev spaces Hp

s,L and Besov spaces Bp
s,L

adapted to operators L satisfying ‘standard assumptions’, which are satisfied in
particular by the perturbed Dirac operators DB and BD. We define extension
operators

(Qϕ,Lf)(t) = ϕ(tL)f (t > 0, f ∈ R(L))

for appropriate holomorphic functions ϕ, and the adapted Hardy–Sobolev and
Besov norms are then, roughly speaking, defined by

||f ||Hp
s,L

:= ||Qϕ,Lf ||T ps , ||f ||Bp
s,L

:= ||Qϕ,Lf ||Zps .

These definitions are reminiscent of the ϕ-transform characterisations of Triebel–
Lizorkin and Besov spaces due to Frazier and Jawerth [38], with functional cal-
culus and tent/Z-spaces taking the place of discretised Littlewood–Paley decom-
positions and sequence spaces.

Chapters 5 and 6 are occupied with setting up a sufficiently rich general
theory of adapted Hardy–Sobolev and Besov spaces. The theory is relatively
straightforward once enough preliminaries have been collected, but this takes
some time. We point out in particular the amount of work needed to establish
independence on ϕ of the spaces Hp

s,L and Bp
s,L (essentially all of Sections 5.2.3

and 5.2.4) and the care which must be taken in discussing completions (Subsection
6.1.3), which is necessary to discuss interpolation.
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4.1.3 Characterisation of solutions to CR systems, and
applications to well-posedness

The main theorem of this article is the following classification of solutions to
the Cauchy–Riemann system (CR)DB. In this statement we restrict ourselves to
1 < p < ∞. Our theorem allows for p ≤ 1 and p = ∞, but the corresponding
results are better stated in terms of the ‘exponent notation’ that we introduce
in Subsection 5.1.1. See Theorems 7.3.1 and 7.3.2 for the full statements of this
result.

Theorem 4.1.6. Let −1 < s < 0 and 1 < p <∞.

(i) Suppose that Hp
s,DB = Hp

s,D. If f ∈ Hp,+
s,DB, then C+

DBf solves (CR)DB, with∣∣∣∣∣∣C+
DBf

∣∣∣∣∣∣
T ps
' ||f ||Ḣp

s
and lim

t→0
C+
DBf(t) = f in Ḣp

s ,

and furthermore limt→∞C+
DBf(t)‖ = 0 in Z ′(Rn). Conversely, if F ∈ T ps

solves (CR)DB and limt→∞ F (t)‖ = 0 in Z ′(Rn), then F = C+
DBf for some

f ∈ Hp,+
s,DB.

(ii) Suppose that Bp
s,DB = Bp

s,D. If f ∈ Bp,+
s,DB, then C+

DBf solves (CR)DB, with∣∣∣∣∣∣C+
DBf

∣∣∣∣∣∣
Zps
' ||f ||Ḃp,ps and lim

t→0
C+
DBf(t) = f in Ḃp,p

s .

and furthermore limt→∞C+
DBf(t)‖ = 0 in Z ′(Rn). Conversely, if F ∈ Zp

s

solves (CR)DB and limt→∞ F (t)‖ = 0 in Z ′(Rn), then F = C+
DBf for some

f ∈ Bp,+
s,DB.

Parts (i) and (ii) of this theorem are essentially identical, the only modifica-
tions being the replacement of (adapted) Hardy–Sobolev spaces with (adapted)
Besov spaces, and of tent spaces with Z-spaces. In fact, our arguments apply
equally to both parts, and we prove them simultaneously. Although the theo-
rem can be thought of as ‘intermediate to’ Theorem 4.1.5, it does not simply
follow by any interpolation procedure. It is proven similarly, but the underlying
techniques must be generalised, and this takes a considerable amount of work.
Neither direction is easy, but the ‘converse’ direction is certainly the harder one.

Starting from information on the intervals I0(H, DB), I0(H, DB∗) 3 2 (as
given by Auscher and Stahlhut), a procedure of ‘♥-duality’ and interpolation
allows us to find non-trivial regions I(H, DB) and I(B, DB) of exponents (p, s)
for which Theorem 4.1.6 applies (this is done in Subsection 6.2.1).

118



With Theorem 4.1.6 as a springboard, we are able to extend the characterisa-
tion of well-posedness of Regularity and Neumann problems, described for p = 2
after the statement of Theorem 4.1.3 and then extended to p 6= 2 and s ∈ {−1, 0}
by Auscher, Mourgoglou, and Stahlhut, as follows.

When −1 ≤ s ≤ 0 and 1 < p < ∞ (and in fact for a slightly larger range of
exponents), Hp

s,D is equal to the set of those f ∈ Ḣp
s (Rn : Cm(1+n)) with curl‖ f‖ =

0. Let N⊥ and N‖ denote the projections from Hp
s,D onto Hp

s,⊥ := Ḣp
s (Rn : Cm)

and Hp
s,‖ := Ḣp

s (Rn : Cmn)∩N (curl‖) respectively. For (p, s) as in Theorem 4.1.6
we have an identification of Hp,+

s,DB as a subset of Hp
s,D, and so we can use the

projections N⊥ and N‖ to define

N
(p,s)
H,DB,‖ : Hp,+

s,DB → Hp
s,‖ and N

(p,s)
H,DB,⊥ : Hp,+

s,DB → Hp
s,⊥

Corresponding definitions of N (p,s)
B,DB,‖ and N

(p,s)
B,DB,⊥ are also made for Besov spaces.

It is these operators that carry the well-posedness of Regularity and Neumann
problems, as shown by the following theorem.9 The s ∈ {−1, 0} endpoints follow
from Theorem 4.1.5.

Theorem 4.1.7. Let B = Â, −1 ≤ s ≤ 0, and 1 < p < ∞. Suppose that
Hp
s,DB = Hp

s,D. Then (RH)ps,A (resp. (NH)ps,A) is well-posed if and only if N (p,s)
H,DB,‖

(resp. N (p,s)
H,DB,⊥) is an isomorphism. The same results hold mutatis mutandi for

Besov spaces.

For all coefficients A, the Lax–Milgram theorem guarantees well-posedness of
the problems (RH)2

−1/2,A and (NH)2
−1/2,A (see [12, Theorems 3.2 and 3.3]). We

refer to solutions of these boundary value problems as energy solutions. There
are certain situations where (RH)ps,A is well-posed for some (p, s), but where the
unique solution to (RH)ps,A with boundary data f ∈ Ḣ2

−1/2 ∩ Ḣp
s (energy data)

is not the corresponding energy solution. This is shown in [18] for the Dirichlet
problems. This behaviour shows why we insist on specifying an interior estimate
in the definitions of our boundary value problems.

We say that a boundary value problem (as above) is compatibly well-posed if it
is well-posed, and if in addition the unique solution to the boundary value problem
with energy data is the energy solution. By Theorem 4.1.7, (RH)ps,A is compatibly
well-posed if N (p,s)

H,DB,‖ is an isomorphism, and if the inverses (N (p,s)
H,DB,‖)−1 and

(N (2,−1/2)
H,DB,‖ )−1 are consistent, in the sense that they are equal on the intersection

9The full theorem (Theorem 7.4.4) allows for p ≤ 1 and p = ∞ (and again, uses new
‘exponent notation’).

119



Hp
s,‖∩H2

−1/2,‖ (and likewise for Neumann problems, and with Besov spaces). This
allows us to interpolate compatible well-posedness as a straightforward corollary
of Theorem 4.1.7.10 Furthermore, by using real interpolation, we can deduce
compatible well-posedness of boundary value problems with Besov boundary data
from that of those with Hardy–Sobolev boundary data.

Theorem 4.1.8. Suppose −1 ≤ s0, s1 ≤ 0, 1 < p0, p1 < ∞, and α ∈ (0, 1), and
let

1
p

= 1− α
p0

+ α

p1
and s = (1− α)s0 + αs1.

(i) If Hpj
sj ,DB

= Hpj
s0,D for j = 0, 1, and if (RH)p0

s0,A and (RH)p0
s1,A are compatibly

well-posed, then (RH)ps,A is compatibly well-posed, and furthermore if s0 6= s1

then (RB)ps,A is compatibly well-posed.

(ii) If Bpj
sj ,DB

= Bpj
s0,D for j = 0, 1, and if (RB)p0

s0,A and (RB)p0
s1,A are compatibly

well-posed, then (RB)ps,A is compatibly well-posed.

Corresponding results are also true for Neumann problems.

Since invertibility is stable in complex interpolation scales, well-posedness of
our boundary value problems is also stable, in the following sense.11

Theorem 4.1.9. Let −1 < s < 0 and 1 < p < ∞, and suppose that Hp0
s0,DB =

Hp0
s0,D for all (p0, s0) in some neighbourhood of (p, s) (in the usual topology on

R2). Suppose also that (RH)ps,A is (compatibly) well-posed. Then (RH)p1
s1,A is

(compatibly) well-posed for all (p1, s1) in some neighbourhood of (p, s). Similar
results hold for Neumann problems and with Besov spaces.

Note that well-posedness extrapolates to well-posedness, and compatible well-
posedness extrapolates to compatible well-posedness.

Finally, we have the duality result for well-posedness.12

Theorem 4.1.10. Let −1 ≤ s ≤ 0 and 1 < p < ∞. Then (RH)ps,A is (compati-
bly) well-posed if and only if (RH)p

′

−s−1,A∗ is (compatibly) well-posed, and similar
results hold for Neumann problems and with Besov spaces.

10As with the other theorems, we have not stated this in full generality. The full result is
Theorem 7.4.5.

11The full result here is Theorem 7.4.6.
12See Theorem 7.4.8.
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Note that the mapping (p, s) 7→ (p′,−s− 1) can be seen as a reflection about
the point (1/2,−1/2) in the (1/p, s)-plane. This corresponds to what we will
later refer to as ‘♥-duality’.

These theorems can be used to derive new well-posedness results for Regularity
problems (RH)ps,A with fractional order s ∈ (−1, 0), and also to derive known
results for (RB)ps,A which were recently obtained by different methods by Barton
and Mayboroda [21]. For details see Subsection 7.4.2.

4.2 Summary of the article

In Section 5.1 we introduce the various function spaces that we use, their basic
properties, and their interrelations. There are two types of function spaces that
we consider. First, the ‘ambient spaces’: tent spaces, Z-spaces, and slice spaces.
Many of the results here are new, or have not been used in this context, so we
make ourselves well acquainted with these spaces. The second type of space that
we consider are the homogeneous ‘smoothness spaces’: Hardy–Sobolev spaces,
Besov spaces, and so on. Since we do not establish any new properties of these
spaces, we restrict ourselves to a quick review. We also introduce a new system of
notation for exponents. This is not strictly necessary, but it greatly cleans up the
exposition of later parts of the article and makes the flow of ideas more apparent.

In Section 5.2 we discuss the basic operator-theoretic notions that we will
need. The operators that we use in applications (i.e. the perturbed Dirac oper-
ators DB and BD) are bisectorial, with bounded H∞ functional calculi on their
ranges, and satisfying certain off-diagonal estimates. Most of the abstract theory
we develop works for any operator A satisfying these ‘standard assumptions’, so
we work with such operators until we are forced to use more specific properties of
perturbed Dirac operators. We establish the boundedness of certain integral op-
erators between tent spaces and Z-spaces. Particular examples of these operators
are given in terms of ‘extension’ and ‘contraction’ operators Qϕ,A and Sψ,A, which
we will introduce and discuss. This section culminates in Theorem 5.2.20, which
quantifies when operators of the form Qψ,Aη(A)Sϕ,A are bounded between differ-
ent tent/Z-spaces, where η is a holomorphic function on an appropriate bisector
which is not necessarily bounded.

In Section 6.1 we define and investigate Hardy–Sobolev and Besov spaces
adapted to an operator A satisfying the aforementioned standard assumptions.
First we introduce ‘pre’-Besov–Hardy–Sobolev spaces Hp

A and Bp
A and establish
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their basic properties in Subsection 6.1.1. Mapping properties of the holomorphic
functional calculus between these spaces, including boundedness forH∞ functions
of A and ‘regularity shifting’ estimates for operators such as powers of A, are
collected in Subsection 6.1.2. These all follow from Theorem 5.2.20. In Subsection
6.1.3 we discuss completions. This is more subtle than it initially seems. We define
‘canonical completions’ ψHp

A and ψBp
A in terms of an auxiliary functions ψ, and

show how these can be used to formulate satisfactory duality and interpolation
results (Proposition 6.1.19 and Theorem 6.1.23). Finally, in Subsection 6.1.4 we
show that the Cauchy operators C±A produce strong solutions of the Cauchy–
Riemann equation (CR)A with initial data in any completion of any pre-Besov–
Hardy–Sobolev space, and we also show the quasi-norm equivalence

||f ||Hp
A
'
∣∣∣∣∣∣C±Af ∣∣∣∣∣∣Tp

(f ∈ Hp,±
A ) (4.9)

when p = (p, s) with p ≤ 2 and s < 0, and likewise for Besov spaces and Z-
spaces (Theorem 6.1.25). This is important because it implies that the Cauchy
operators can be used to construct solutions of (CR)A which satisfy good tent/Z-
space estimates, at least for this range of exponents p = (p, s).

Up until this point, we work with CN -valued functions for an arbitrary N ∈
N, as in this abstract setting we gain nothing from the transversal/tangential
structure of Cm(1+n).

In Section 6.2 we consider the case when A is a perturbed Dirac operator of
the form DB or BD (and we finally specialise to Cm(1+n)-valued functions). We
show that for a large range of exponents p the spaces Hp

D and Bp
D may be realised

as projections of classical smoothness spaces (Theorem 6.2.1). Then we define
‘identification regions’ I(H, DB) and I(B, DB), consisting of exponents p for
which we can identify Hp

D and Bp
D as completions of Hp

DB and Bp
DB respectively.

These regions turn out to be stable under interpolation and ♥-duality (in a sense
which interchanges B and B∗). Finally, in Theorem 6.2.12 we show that for
p = (p, s) ∈ I(H, DB) with s < 0 we have boundedness of the Cauchy operator
C+
DB from Hp

DB to Tp, extending the ‘abstract’ estimate (4.9) (and likewise for
Besov spaces and Z-spaces). This is a long argument which requires various ad-
hoc estimates. The result is known to fail for s = 0, so it does not follow by
interpolation.

After presenting some basic properties of gradients of solutions of LAu = 0
(or equivalently solutions of (CR)DB) we prove Theorems 7.3.1 and 7.3.2, the
classification of solutions to (CR)DB in tent/Z-spaces with a decay condition at
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infinity.13 The argument is quite long, particularly for exponents p = (p, s) with
p > 2, and uses all the preceding material. We have been (perhaps excessively)
pedantic in citing dependence on previous results, so it should be possible to treat
certain technical lemmas as ‘black boxes’ in initial readings. We point out that
although these results are ‘intermediate to’ the Auscher–Mourgoglou–Stahlhut
theorem 4.1.5, and although it is proven with a similar argument, it does not
follow by any interpolation procedure. The results must be reproven manually.14

In Section 7.4 we present straightforward (but still somewhat technical) ap-
plications to well-posedness and compatible well-posedness of Regularity and
Neumann problems. These have already been summarised in the introduction
(Subsection 4.1.3). In particular, we derive a range of well-posedness for the
Regularity problem for real coefficient scalar equations in Subsection 7.4.2. For
Hardy–Sobolev boundary data, this seems to be new. In Subsection 7.4.3 we
state (without proof) a convergence result for Whitney averages of solutions to
LAu = 0 within tent spaces and Z-spaces. Finally, we sketch the relationship
between our approach and the method of layer potentials in Subsection 7.4.4. In
the range of exponents p for which our results hold, the solutions to boundary
value problems are all given by (generalised) layer potentials.

4.3 Notation

The following notational conventions, some of them non-standard, will be used
throughout the article.

For a, b ∈ R and t > 0 we write

mb
a(t) :=

 ta (t ≤ 1)
t−b (t ≥ 1).

For 0 < p, q ≤ ∞, we define the number

δp,q := 1
q
− 1
p
,

with the interpretation 1/∞ = 0.
We write the Euclidean distance on Rn as d(x, y) = d(y, x) := |x−y|, the open

ball with centre x ∈ Rn and radius r > 0 by B(x, r) := {y ∈ Rn : d(x, y) < r},

13The decay condition is removed for certain exponents in Section 7.2.
14Of course, we do manage to recycle some arguments from [16] and [15].
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and the (half closed, half open) annulus with centre x ∈ Rn, inner radius r0 > 0,
and outer radius r1 > r0 by

A(x, r0, r1) := B(x, r1) \B(x, r0) = {y ∈ Rn : r0 ≤ d(x, y) < r1}.

For subsets E,F ⊂ Rn, we write

d(E,F ) := dist(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F}.

We let L0(Ω : E) denote the set of strongly measurable functions from a
measure space Ω to a Banach space E. For two quasi-Banach spaces X and Y ,
we write X ↪→ Y to mean that X ⊂ Y (possibly after some identification has
been made) and that the identity map is bounded. Often we will refer to norms
as ‘quasinorms’ even though they are actually norms; for example, we will refer
to the Lp quasinorm when p ∈ (0,∞], even though this is a norm when p ≥ 1.
For a quick introduction to quasi-Banach spaces the reader can consult the early
sections of [56].

When necessary, we will label dual pairings by the space on the left: for
example, by 〈f, g〉Lp , we will mean the canonical duality pairing between Lp and
Lp
′ , with f ∈ Lp and g ∈ Lp′ .
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Chapter 5

Technical preliminaries

5.1 Function space preliminaries

Throughout this entire section we will consider CN -valued functions for some
fixed N ∈ N, but since nothing really changes whether we choose N = 1 or
N 6= 1 (see Remark 5.1.13), we will not refer to CN in the notation. So we will
write L2(Rn) = L2(Rn : CN), Tp(Rn) = Tp(Rn : CN), and so on. For z ∈ CN we
will write |z| in place of ||z||CN .

5.1.1 Exponents

This work makes heavy use of the relationship between different exponents for
function spaces. The most efficient way to do this, balancing economy of notation
and clarity of ideas, is to introduce a new formalism for exponents right at the
beginning, and work with it consistently.

Fix n ∈ N+ corresponding to the dimension in which we will work. The
following system of notation depends implicitly on n.

The set of exponents is the disjoint union

E := Efin t E∞

where Efin := {(p, s) : p ∈ (0,∞), s ∈ R} and E∞ := {(∞, s;α) : s ∈ R, α ≥ 0}.
We say that an exponent is finite if it is in Efin, and infinite if it is in E∞.

We define two functions i : E → (0,∞], r : E → R, representing integrability
and a kind of regularity, by

i(p, s) := p, i(∞, s;α) :=∞,
r(p, s) := s, r(∞, s;α) := s+ α.
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We also define functions j, θ : E→ R by

j(p, s) := 1/p, j(∞, s;α) := −α/n
θ(p, s) := s, θ(∞, s;α) := s.

Note that p is finite if and only if j(p) is positive, and furthermore every
exponent p is determined by the pair (j(p), θ(p)).

For r ∈ R and p ∈ E, define p + r to be the unique exponent satisfying

j(p + r) = j(p) and θ(p + r) = θ(p) + r.

We similarly define p− r.
For every exponent p, we define the dual exponent p′ to be the unique ex-

ponent satisfying j(p′) + j(p) = 1 and θ(p′) + θ(p) = 0. Concretely, for finite
exponents we have

(p, s)′ :=

 (p′,−s) (p > 1)
(∞,−s;n(1

p
− 1)) (p ≤ 1)

where p′ is the usual Hölder conjugate of p. Clearly p′′ = p. We also define the
♥-dual exponent

p♥ := p′ − 1,

and a quick computation shows that p♥♥ = p.
For two exponents p,q ∈ E, we write p ↪→ q to mean that

θ(p) ≥ θ(q) and θ(q)− θ(p) = n(j(q)− j(p)).

We always have p ↪→ p. Observe that p ↪→ q and q ↪→ r implies p ↪→ r, and
p ↪→ q if and only if q′ ↪→ p′. We define the Sobolev exponent p∗ be the unique
exponent satisfying p ↪→ p∗ and θ(p∗) = θ(p)− 1.

For η ∈ R, define [p,q]η to be the unique exponent satisfying

j([p,q]η) = (1− η)j(p) + ηj(q),
θ([p,q]η) = (1− η)θ(p) + ηθ(q).

Note that [p,q]0 = p and [p,q]1 = q. Note also that p ↪→ q if and only if
q = [p,p∗]η for some η ≥ 0.

Lemma 5.1.1. Suppose p and q are exponents with p ↪→ q. Then [p,q]η0 ↪→
[p,q]η1 whenever η0 ≤ η1.
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Proof. Write

θ([p,q]η1)− θ([p,q]η0) = ((1− η1)θ(p) + η1θ(q))− ((1− η0)θ(p) + η0θ(q))
= (η1 − η0)(θ(q)− θ(p)) (5.1)
= n(η1 − η0)(j(q)− j(p)) (5.2)
= n (((1− η1)j(p) + η1j(q))− ((1− η0)j(p) + η0j(q)))
= n(j([p,q]η1)− j([p,q]η0)).

Where line (5.2) follows from p ↪→ q. Furthermore, line (5.1), η1 − η0 ≥ 0, and
θ(p) ≥ θ(q) imply that θ([p,q]η0) ≥ θ([p,q]η1). Thus [p,q]η0 ↪→ [p,q]η1 .

A straightforward computation shows the following lemma.

Lemma 5.1.2. Suppose p ↪→ q and η0, η1, λ ∈ R. Then

[[p,q]η0 , [p,q]η1 ]λ = [p,q](1−λ)η0+λη1 .

In particular this implies

p = [[p,q]−1,q]1/2
q = [p, [p,q]2]1/2.

The most convenient way of visualising exponents and relations between them
is as points in the (j, θ) plane. In Figure 5.1 we show two exponents p and q with
p ↪→ q, their dual exponents, their ♥-duals, and various other exponents which
may be constructed from them. The operations p 7→ p′ and p 7→ p♥ are given
by reflection about the marked points at (1/2, 0) and (1/2,−1/2) respectively.1

Observe that we have p ↪→ q if and only if the line segment from p to q is parallel
the line from ((n+ 1)/n, 0) to (1,−1) with the same orientation.

5.1.2 Tent spaces

The most fundamental function spaces in this work are the tent spaces. These
were first introduced by Coifman, Meyer, and Stein [32, 33], and they have since
proven their worth in harmonic analysis and PDE. The other ‘ambient spaces’
that we will use, namely Z-spaces and slice spaces, are closely related to tent
spaces, so a solid knowledge of tent spaces will be useful.

1The exponent (1/2,−1/2) is special: in Section 7.4 we introduce it as the ‘energy exponent’.
Certain boundary value problems associated with this exponent are automatically well-posed
due to the Lax–Milgram theorem.
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Figure 5.1: Various exponents in the (j, θ) plane.
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For x ∈ Rn we define the cone with vertex x by

Γ(x) := {(t, y) ∈ R1+n
+ : y ∈ B(x, t)}

where B(x, t) is the open ball with centre x and radius t, and for each open ball
B ⊂ X we define the tent with base B by

T (B) := R1+n
+ \

 ⋃
x/∈B

Γ(x)
 .

Equivalently, T (B) is the set of points (y, t) ∈ R1+n
+ such that B(y, t) ⊂ B.

The tent space quasinorms are defined in terms of the Lusin operator A and
Carleson operators Cα. These are defined as follows. For all α ≥ 0, f ∈ L0(R1+n

+ )
and x ∈ Rn, we define

Af(x) :=
(¨

Γ(x)
|f(t, y)|2 dy dt

tn+1

)1/2

(5.3)

and

Cαf(x) := sup
B3x

1
rαB

(
1
rnB

¨
T (B)
|f(y, t)|2 dy dt

t

)1/2

.

For s ∈ R, we define an operator κs on L0(R1+n
+ ) by

(κsf)(t, x) := tsf(t, x)
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for all (t, x) ∈ R1+n
+ .

Now we will start using the exponent notation of Subsection 5.1.1, although
it will not be truly useful just yet.

Definition 5.1.3. For a finite exponent p, the tent space Tp = Tp(Rn) is the set

Tp = T ps := {f ∈ L0(R1+n
+ ) : A(κ−sf) ∈ Lp(Rn)}

equipped with the quasinorm

||f ||T ps :=
∣∣∣∣∣∣A(κ−sf)

∣∣∣∣∣∣
Lp(Rn)

.

For an infinite exponent p = (∞, s;α) we define Tp by

Tp = T∞s;α := {f ∈ L0(R1+n
+ ) : Cα(κ−sf) ∈ L∞(Rn)}

with its natural norm.

Remark 5.1.4. The spaces T ps agree with those defined by Hofmann, Mayboroda,
and McIntosh [50, §8.3], and with the spaces T p,22,s of Huang [51]. Our spaces T∞s;0
agree with Huang’s spaces T∞,22,s .

All tent spaces are quasi-Banach spaces (Banach when i(p) ≥ 1). For a finite
exponent p the subspace Tp;c ⊂ Tp of compactly supported functions is dense in
Tp, and L2

c(R1+n
+ ) is densely contained in Tp.

Definition 5.1.5. Let p be an exponent with i(p) ≤ 1, and suppose B ⊂ Rn is
a ball. We say that a function a ∈ L0(R1+n

+ ) is a Tp-atom (associated with B) if
a is essentially supported in T (B) and if

||a||T 2
s
≤ |B|δp,2 .

where δp,2 = 1
2 −

1
p
(as defined in Section 4.3).

Theorem 5.1.6 (Atomic decomposition). Let p be an exponent with i(p) ≤ 1.
Then a function f ∈ L0(R1+n

+ ) is in Tp if and only if there is a sequence (ak)k∈N
of Tp-atoms and a sequence λ ∈ `p(N) such that

f =
∑
k∈N

λkak (5.4)

with convergence in Tp. Furthermore, we have

||f ||Tp ' inf ||λ||`p(N)

where the infimum is taken over all such decompositions.
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This is simply derived from the usual atomic decomposition theorem [33,
Theorem 1c].

Note that the following duality theorem includes all finite exponents, without
needing to separate the cases i(p) ≤ 1 and i(p) > 1. This is the first justification
of our exponent notation.

Theorem 5.1.7 (Duality). Suppose that p is a finite exponent. Then for all
f, g ∈ L0(R1+n

+ ) we have
¨

R1+n
+

|(f(t, x), g(t, x))| dx dt
t
. ||f ||Tp ||g||Tp′ , (5.5)

and the pairing
〈f, g〉 :=

¨
R1+n

+

(f(t, x), g(t, x)) dx dt
t

(5.6)

identifies the Banach space dual of Tp with Tp′.

Note in particular that the integral in (5.5) converges absolutely.

Remark 5.1.8. Throughout this article we will refer to the duality pairing appear-
ing in (5.6) as the L2 duality pairing.

When p is finite and i(p) ≥ 2, Tp may also be characterised in terms of the
Carleson operator C0. This is a straightforward extension of [33, Theorem 3].

Theorem 5.1.9 (Carleson characterisation of Tp). Suppose p is a finite exponent
with i(p) > 2. Then for all f ∈ L0(R1+n

+ ) we have

||f ||Tp '
∣∣∣∣∣∣C0(κ−θ(p)f)

∣∣∣∣∣∣
Lp(Rn)

.

Theorem 5.1.10 (Change of aperture). For β ∈ (0,∞) and x ∈ Rn define

Γβ(x) := {(t, y) ∈ R1+n
+ : y ∈ B(x, βt)},

and for f ∈ L0(R1+n
+ ) define Aβf(x) as in (5.3), with Γβ(x) in place of Γ(x). Then

for β ∈ (0,∞) and each finite exponent p we have an equivalence of quasinorms

||f ||Tp '
∣∣∣∣∣∣Aβ(κ−θ(p)f)

∣∣∣∣∣∣
Li(p)(Rn)

.

This was proven by Coifman, Meyer, and Stein for T p0 [33, Proposition 4]
and Harboure, Torrea, and Viviani for T p,q with q ∈ (1,∞) [44, Proposition
2.3].2 This can be simply extended to p, q ∈ (0,∞) [3, Proposition 3.21], and

2We have not defined the spaces T p,q with q 6= 2 here, because we will not use them.
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the extension to the more general tent spaces here is immediate. Note that the
method of proof in [3] requires knowledge of the result for q 6= 2.

The following embedding theorem, which can be seen as a tent space analogue
of the Hardy–Littlewood–Sobolev embedding theorem, is proven in [4, Theorem
2.19].3

Theorem 5.1.11 (Embeddings). Let p and q be exponents with p ↪→ q. Then
we have the embedding

Tp ↪→ T q.

The following complex interpolation theorem was proven by Hofmann, May-
boroda, and McIntosh for finite exponents [50, Lemma 8.23], and the extension
to one infinite exponent follows by duality [4, Theorem 2.1].

Theorem 5.1.12 (Complex interpolation). Suppose p and q are exponents with
j(p), j(q) ≥ 0 (with equality for at most one exponent), and 0 < θ < 1. Then we
have the identification

[Tp, T q]θ = T [p,q]θ .

Remark 5.1.13. In contrast with the article [4], we define the operator κs in terms
of powers of t rather than powers of ball volumes, and so our tent spaces T ps (Rn)
correspond to the tent spaces T p,2s/n(Rn) of [4]. We also use CN -valued functions
instead of C-valued functions. This does not change the validity of previous
results, as one can always split T ps (Rn : CN) ' ⊕Nj=1T

p
s (Rn : C) and apply the

results to each summand individually. This reduction would fail if we were to
replace CN with a general Banach space, but thankfully we have no need for such
generality.

5.1.3 Z-spaces

We now introduce a class of function spaces, called Z-spaces, which are related
to tent spaces by real interpolation. The Z-spaces play the role for Besov spaces
Ḃp,p
s that the tent spaces play for Hardy–Sobolev spaces Ḣp

s .

Definition 5.1.14. We refer to a pair

c = (c0, c1) ∈ (0,∞)× (3/2,∞)
3The case where p and q are both infinite is not explicitly proven there, but it follows by

the same argument.
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as a Whitney parameter. To each Whitney parameter c and each (t, x) ∈ R1+n
+

we associate the Whitney region

Ωc(t, x) := (c−1
1 t, c1t)×B(x, c0t) ⊂ R1+n

+ ,

and for f ∈ L0(R1+n
+ ) we define the L2-Whitney averages

Wcf(t, x) :=
(̂ˆ

Ωc(t,x)
|f(τ, ξ)|2 dξ dτ

)1/2

.

For an exponent p and a Whitney parameter c, and for all f ∈ L0(R1+n
+ ), we

define the quasinorm

||f ||Zp
c

:=
∣∣∣∣∣∣Wc(κ−r(p)f)

∣∣∣∣∣∣
Li(p)(R1+n

+ )
(5.7)

(note the appearance of r(p) here) and a corresponding function space

Zp
c = Zp

c (Rn) := {f ∈ L0(R1+n
+ ) : ||f ||Zp

c
<∞}.

For simplicity we write Ω(t, x) := Ω(1,2)(t, x).

Remark 5.1.15. The spaces Zp
c coincide with the spaces L(i(p), r(p) + 1, 2) in-

troduced by Barton and Mayboroda [21]. In our applications these spaces will
play the same role as they do in [21] - namely that of an ambient space for the
gradient of a solution to an elliptic BVP with boundary data in a Besov space.
The connection with tent spaces presented here (extending that of [4]) is new.

Remark 5.1.16. The restriction c1 > 3/2 is for technical reasons. The first time
that it is actually needed is in our proof of the atomic decomposition theorem. It
it possible to extend everything to c1 > 1 by a straightforward covering argument,
but this would take extra work, and c1 > 3/2 is sufficient for our applications.

The following real interpolation theorem appears in [4, Theorem 2.9]. In
Theorem 5.1.30 we will extend it to infinite exponents.

Theorem 5.1.17 (Real interpolation for tent spaces with finite exponents). Sup-
pose that p and q are finite exponents with θ(p) 6= θ(q), and 0 < θ < 1. Then
for all Whitney parameters c we have the identification

(Tp, T q)θ,pθ = Z [p,q]θ
c

with equivalent quasinorms, where pθ = i([p,q]θ).
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Consequently, when p is finite, the Z-spaces Zp
c are complete and independent

of c (up to equivalence of quasinorms). Hence we may simply write Zp in place
of Zp

c . We will soon extend this to infinite exponents.
We will establish further properties of the Z-spaces ‘by hand’ rather than

arguing by interpolation, because this yields stronger results. In particular, it
yields absolute convergence of L2 duality pairings, while interpolation would only
prove this on dense subspaces. This will be important in applications (Chapter
7). Our main tool is an equivalent dyadic characterisation of the Zp-quasinorm.4

To establish this characterisation we will need some notation and a preliminary
counting lemma.

For a standard (open) dyadic cube Q ∈ Q(Rn),5 and for k ∈ Z, define the
Whitney cube

Q
k := (2k`(Q), 2k+1`(Q))×Q,

and the Whitney grid
Gk := {Qk : Q ∈ Q(Rn)}.

For each k ∈ Z, Gk is a partition of R1+n
+ up to a set of measure zero.

For each Whitney parameter c, each k ∈ Z, and each Whitney cube Qk ∈ Gk,
we define

Gc(Q
k) := {Rk ∈ Gk : Rk ∩ Ωc(t, x) 6= ∅ for some (t, x) ∈ Qk}.

Lemma 5.1.18. Let c be a Whitney parameter and k ∈ N. Then for all Qk ∈ Gk

we have
|Gc(Q

k)| .c,k,n 1

(where | · | denotes cardinality).

Proof. The condition Rk ∩ Ωc(t, x) 6= ∅ may be rewritten as

`(R) ∈ [t/2k+1c1, 2−kc1t] and dist(R, x) < c0t.

By rescaling and translating, the number of R ∈ Q(Rn) such that this condition
is satisfied is equal to the number of R ∈ Q(Rn) such that

`(R) ∈ (1/2k+1c1, 2−kc1) and dist(R, 0) < c0,

which is finite and depends only on c, k, and n.
4This characterisation is stated and used by Barton and Mayboroda [21, Proof of Theorem

4.13], but without proof.
5Any system of dyadic cubes will work here.
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Proposition 5.1.19 (Dyadic characterisation). Let p be a finite exponent, c a
Whitney parameter, and k ∈ Z. Then we have

||f ||Zp
c
'c,k,p

∣∣∣∣∣∣∣∣`(Q)−r(p)[|f |2]1/2
Q
k

∣∣∣∣∣∣∣∣
`p(Gk,`(Q)n)

,

where [|f |2]1/2
Q
k =

∣∣∣∣∣∣f | L2(Qk
, dτdξ/τ 1+n)

∣∣∣∣∣∣.
Proof. Write p = (p, s) and estimate

||f ||pZp
c

=
∑

Q
k∈Gk

¨
Q
k
Wc(κ−sf)(t, x)p dt

t
dx

'
∑

Q
k∈Gk

(2k`(Q))−ps
¨
Q
k

∣∣∣∣∣∣f | L2(Ωc(t, x), dτdξ/τ 1+n)
∣∣∣∣∣∣p dt

t
dx (5.8)

.
∑

Q
k∈Gk

(2k`(Q))−ps
¨
Q
k

∑
R
k∈Gc(Q

k)

∣∣∣∣∣∣f | L2(Rk
, dτdξ/τ 1+n)

∣∣∣∣∣∣p dt
t
dx (5.9)

'k,p,s
∑

Q
k∈Gk

R
k∈Gc(Q

k)

`(R)n−ps
∣∣∣∣∣∣f | L2(Rk

, dτdξ/τ 1+n)
∣∣∣∣∣∣p (5.10)

'
∑

R
k∈Gk

`(R)n
(
`(R)−s

∣∣∣∣∣∣f | L2(Rk
, dτdξ/τ 1+n)

∣∣∣∣∣∣)p . (5.11)

The equivalence (5.8) comes from the fact that τ ' 2k`(Q) when (τ, ξ) ∈ Ωc(t, x)
and (t, x) ∈ Qk. The upper bound (5.9) comes from covering Ωc(t, x) with the
Whitney cubes Rk ∈ Gc(Q), of which there are boundedly many by Lemma 5.1.18.
The equivalence (5.10) comes from noting that `(R) ' `(Q) when Rk ∈ Gc(Q

k).
Finally, (5.11) follows from the fact that every cube Rk ∈ Gk appears at least once,
and at most a bounded number of times, in the multiset {Rk ∈ Gc(Q

k) : Qk ∈ G}.
To prove the converse statement, we need only prove the converse direction

of (5.9). To do this we note that there exists a Whitney parameter c̃ such that
whenever Rk ∈ Gc(Q

k) and (t, x) ∈ Qk, we have Rk ⊂ Ωc̃(t, x). Indeed, one can
take c̃0 = 2(c0 + 2−k

√
n(c1 + 1)) and c̃1 = 4c1. This, along with the independence

of Zp
c on c, completes the proof.

Remark 5.1.20. The same proof will work for infinite exponents once we show
that the corresponding Z-space norms are independent of c.

The dyadic characterisation of the Z-space quasinorm can be used to prove a
duality theorem when i(p) > 1. As with the corresponding result for tent spaces,
this is not just an abstract identification of dual spaces (which could be deduced
by real interpolation), but also includes absolute convergence of the L2 duality
pairing.
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Proposition 5.1.21 (Duality: reflexive range). Suppose i(p) ∈ (1,∞). Then for
all f, g ∈ L0(R1+n

+ ) we have¨
R1+n

+

|(f(t, x), g(t, x))| dx dt
t
. ||f ||Zp ||g||Zp′ , (5.12)

and the L2 duality pairing identifies the Banach space dual of Zp with Zp′.

Proof. Let Q0 = (1, 2) × (0, 1)n equipped with the measure dx dt/t1+n, and for
each function f ∈ L0(R1+n

+ ) and each cube Q ∈ G, let fQ be the function on Q0

which is the affine reparametrisation of 1Qf , so that [|f |2]1/2
Q

=
∣∣∣∣∣∣fQ∣∣∣∣∣∣L2(Q0)

. Then
by Proposition 5.1.19, writing p = (p, s), we have

||f ||Zp '
∣∣∣∣∣∣`(Q)−s[|f |2]1/2

Q

∣∣∣∣∣∣
`p(G,`(Q)n)

'
∣∣∣∣∣∣`(Q)−sfQ

∣∣∣∣∣∣
`p(G,`(Q)n:L2(Q0))

=:
∣∣∣∣∣∣fQ∣∣∣∣∣∣`ps(G,`(Q)n:L2(Q0))

.

Evidently the map f 7→ (fQ)Q∈G is an isomorphism between Zp and `ps(G, `(Q)n :
L2(Q0)).

Furthermore, for all f, g ∈ L0(R1+n
+ ) we haveˆ

R1+n
+

|(f(t, x), g(t, x))| dx dt
t
'
∑
Q∈G

`(Q)n
¨
Q0

|(fQ(t, x), gQ(t, x))| dx dt
t1+n ,

and so the mapping f 7→ (fQ)Q∈G identifies the L2(R1+n
+ ) duality pairing with the

`2(G, `(Q)n : L2(Q0)) duality pairing (up to a constant).
Since we have∑

Q∈G

`(Q)n|(fQ, gQ)L2(Q0)| .
∣∣∣∣∣∣fQ∣∣∣∣∣∣`ps(G,`(Q)n:L2(Q0))

∣∣∣∣∣∣gQ∣∣∣∣∣∣`p′−s(G,`(Q)n:L2(Q0))

and since the `2(G, `(Q)n : L2(Q0)) duality pairing identifies `p′s (G, `(Q)n : L2(Q0))
as the dual of `p−s(G, `(Q)n : L2(Q0)), the corresponding results for Zp follow.

The dyadic characterisation can also be used to prove an atomic decomposition
theorem for Z-spaces.

Definition 5.1.22. Let p = (p, s) be a finite exponent and c a Whitney param-
eter. We say that a function a ∈ L0(R1+n

+ ) is a Zp
c -atom associated with the point

(t, x) ∈ R1+n
+ if a is essentially supported in Ωc(t, x) and if∣∣∣∣∣∣κ−sa∣∣∣∣∣∣

L2(Ωc(t,x),dx dt/t)
≤ tnδp,2 .

(recall that δp,2 = 1
2 −

1
p
is defined in Section 4.3).
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Lemma 5.1.23. Let p be a finite exponent and suppose a is a Zp
c -atom associated

with (t0, x0) ∈ R1+n
+ . Then

||a||Zp .c,p 1.

Proof. A reasonably quick computation shows that

{(t, x) ∈ R1+n
+ : Ωc(t, x) ∩ Ωc(t0, x0) 6= ∅} ⊂ Ωc̃(t0, x0)

where c̃0 = c0(1 + c2
1) and c̃1 = c2

1. Hence we can estimate, using the assumed
support and size conditions for a and writing p = (p, s),

||a||Zp
c

≤

¨
Ω
c̃
(t0,x0)

(
1
t1+n

¨
Ωc(t0,x0)

τ |τ−sa(ξ, τ)|2 dξ dτ
τ

)p/2
dx

dt

t

1/p

.c t
nδp,2
0

¨
Ω
c̃
(t0,x0)

t
−np/2
0 dx

dt

t

1/p

'c,p t
nδp,2−n2 +n

p

0

= 1

as required.

Theorem 5.1.24 (Atomic decomposition of Z-spaces). Suppose p = (p, s) is
a finite exponent with p ≤ 1 and c is a Whitney parameter. Then a function
f ∈ L0(R1+n

+ ) is in Zp if and only if there exists a sequence (ak)k ∈ N of Zp
c -

atoms and a scalar sequence λ ∈ `p(N) such that
∑
k∈N

λkak = f

with convergence in Zp. Furthermore, we have

||f ||Zp ' inf ||λ||`p(N) ,

where the infimum is taken over all such decompositions.

Proof. Given such a decomposition of f , we have

||f ||pZp =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k∈N

λkak

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Zp

. ||λ||p`p(N)
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by Lemma 5.1.23, and so ||f ||Zp . inf ||λ||`p(N) . It remains to prove the reverse
estimate. For each k ∈ Z we can write

f =
∑

Q
k∈Gk

f
Q
k (5.13)

where f
Q
k = 1

Q
kf ,6 and by Proposition 5.1.19 this sum converges in Zp.7 If

k ≥ log2(c−1
0
√
n/3) + 1 and if c1 > 3/2 (this is the first place where we actually

use this assumption) then we have

Q
k ⊂ Ωc(cQ, tQ)

for all Q ∈ Q(Rn), where cQ is the center of Q and tQ is the midpoint of 2k`(Q)
and 2k+1`(Q). Therefore, under this condition on k, each f

Q
k satisfies the support

condition required of a Zp
c -atom. The norms

∣∣∣∣∣∣κ−sf
Q
k

∣∣∣∣∣∣
L2(Ωc(cQ,tQ),dx dt/t)

are all
finite by Proposition 5.1.19, so we can define

λ
Q
k := t

−nδp,2
Q
k

∣∣∣∣∣∣κ−sf
Q
k

∣∣∣∣∣∣
L2(Ωc(cQ,tQ),dx dt/t)

and

a
Q
k :=

 λ−1
Q
kfQk (f

Q
k 6= 0)

0 (f
Q
k = 0).

Then each a
Q
k is a Zp

c -atom and

f =
∑

Q
k∈Gk

λ
Q
ka

Q
k

with convergence in Zp, and furthermore

∣∣∣∣∣∣(λ
Q
k)
∣∣∣∣∣∣
`p(Gk)

=
∣∣∣∣∣
∣∣∣∣∣t−nδp,2Q

k

∣∣∣∣∣∣κ−sf
Q
k

∣∣∣∣∣∣
L2(Ωc(c

Q
k ,t

Q
k ),dx dt/t)

∣∣∣∣∣
∣∣∣∣∣
`p(Gk)

'
∣∣∣∣∣∣∣∣(2k`(Q))−nδp,2−s|Q|1/2[|f |2]1/2

Q
k

∣∣∣∣∣∣∣∣
`p(Gk)

'
∣∣∣∣∣∣∣∣`(Q)(n/p)−s[|f |2]1/2

Q
k

∣∣∣∣∣∣∣∣
`p(Gk)

' ||f ||Zp

again using Proposition 5.1.19.
6Note that this notation differs from that in the proof of Proposition 5.1.21.
7Convergence in Zp does not follow immediately: one must write the series (5.13) as a limit

of partial sums and argue via dominated convergence.
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Remark 5.1.25. In contrast to the setting of tent spaces, it is very easy to construct
atomic decompositions of functions f ∈ Zp: as in the proof of the theorem, simply
decompose f via the Whitney grid Gk for sufficiently large k. This works for all
finite p, even if i(p) > 1. Abstract decompositions will be used to prove Zp-Zp′

duality when i(p) ≤ 1.

Lemma 5.1.26. For all Whitney parameters c and all f ∈ L0(R1+n
+ ), the function

Wcf is lower semicontinuous.

Proof. FixM > 0 and suppose thatWcf(t, x) > M . Then there exists a small ε >
0 such that W(c0−ε,c1−ε)f(t, x) > M also. A short computation shows that if x̃ ∈
B(x, εt/2) and if |t̃−t| < (c1/(c1−ε)−1)t, then Ωc(t̃, x̃) contains Ω(c0−ε,c1−ε)(t, x),
so for all such (t̃, x̃) we have

Wcf(t̃, x̃) ≥ W(c0−ε,c1−ε)f(t, x) > M.

Therefore the set {(t, x) ∈ R1+n
+ :Wcf(t, x) > M} is open.

Corollary 5.1.27. Let p be an infinite exponent. Then

||f ||Zp
c

= sup
(t,x)∈R1+n

+

Wc(κ−r(p)f)(t, x),

i.e. the essential supremum in the definition of the Zp
c -norm can be replaced with

a supremum.

Proof. Lower semicontinuity of the function Wc(κ−r(p)f) implies that if

Wc(κ−r(p)f)(t, x) > M

for some M <∞ at one point (t, x), then it continues to hold in an open neigh-
bourhood of (t, x), and in particular on a set of positive measure.

We can finally prove a duality theorem for Zp with i(p) ≤ 1. As with the
other duality results so far, note that this includes absolute convergence of the
L2 duality pairing.

Theorem 5.1.28 (Duality: non-reflexive range). Suppose i(p) ≤ 1 and let c be
a Whitney parameter. Then for all f, g ∈ L0(R1+n

+ ) we have
¨

R1+n
+

|(f(t, x), g(t, x))| dx dt
t
. ||f ||Zp

c
||g||

Zp′
c
, (5.14)

and the L2 duality pairing identifies the Banach space dual of Zp
c with Zp′

c .
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Proof. Write p = (p, s), so that p′ = (∞,−s, nδp,1). First suppose a is a Zp
c -atom

associated with a point (t0, x0) ∈ R1+n
+ . Then we have

¨
R1+n

+

|(a(t, x), g(t, x))| dx dt
t

≤
∣∣∣∣∣∣κ−sa∣∣∣∣∣∣

L2(R1+n
+ ,dx dt/t)

||κsg||L2(Ωc(t0,x0),dx dt/t)

. t
nδp,2+nδ1,p+(n/2)
0

∣∣∣∣∣∣κs−nδ1,pg
∣∣∣∣∣∣
L2(Ωc(t0,x0),dx dt/t1+n)

≤ ||g||Zp
c

by Corollary 5.1.27. For general f ∈ Zp, write f as the sum of Zp
c -atoms as in

Theorem 5.1.24, so that
¨

R1+n
+

|(f(t, x), g(t, x))| dx dt
t
≤
∑
k∈N
|λk|
¨

R1+n
+

|(ak(t, x), g(t, x))| dx dt
t

. ||g||
Zp′
c
||λ||`p(N)

since p ≤ 1. Taking the infimum over all atomic decompositions of f proves
(5.14).

Now suppose that φ ∈ (Zp
c )′. By the same technique as in the proof of

Proposition 5.1.21, we find that there exists a sequence (gQ) ∈ `∞−s(G : L2(Q0))
corresponding to the induced action of φ on `ps(G, `(Q)n : L2(Q0)) (since `p(N)′ =
`∞(N) for p ≤ 1). Hence there exists a function Gφ ∈ L0(R1+n

+ ) corresponding to
the action of φ on Zp

c . We need to show that Gφ is in Zp′
c .

Suppose (t, x) ∈ R1+n
+ . Then we can estimate

Wc(κs−nδ1,pGφ)(t, x) ' t−nδ1,p ||Gφ||L2
−s(Ωc(t,x),dξ dτ/τ1+n)

= t−nδ1,p sup
F∈L2

s(Ωc(t,x),dξ dτ/τ1+n)
||F ||≤1

|(F,Gφ)|

. t−nδ1,p−(n/2)−nδp,2 ||φ||(Zps )′ sup
F∈L2

s(Ωc(t,x),dξ dτ/τ)
||F ||≤tnδp,2

||F ||Zps

≤ ||φ||(Zp)′ ,

using nδ1,p + (n/2) +nδp,2 = 0, the fact that the condition in the final supremum
implies that F is a Zp

c -atom, and Lemma 5.1.23. Therefore we have

||Gφ||Zp′
c

= sup
(t,x)∈R1+n

+

Wc(κs−nδ1,pGφ)(t, x) . ||φ||(Zp
c )′

as desired.

139



Corollary 5.1.29. For all infinite exponents p and all Whitney parameters c,
the Zp

s norms are mutually equivalent.

Hence for all exponents p we write Zp in place of Zp
c .

Now that we have identified the duals of all Zp spaces for finite p, we can
give a full interpolation theorem.

Theorem 5.1.30 (Real interpolation of tent spaces: full range). Suppose that
p and q are exponents with θ(p) 6= θ(q), and 0 < θ < 1. Then we have the
identification

(Tp, T q)θ,pθ = Z [p,q]θ

with equivalent quasinorms, where pθ = i([p,q]θ).

Proof. For finite exponents this is precisely Theorem 5.1.17. If 1 < i(p), i(q) ≤
∞, this follows by writing

(Tp, T q)θ,pθ = ((Tp′)′, (T q′)′)θ,pθ = (Tp′ , T q′)′θ,p′
θ

via the duality theorem for real interpolation [22, Theorem 3.7.1], using that
Tp′ ∩ T q′ is dense in both Tp′ and T q′ , and then noting that

p′θ = i([p,q]θ)′ = i([p′,q′]θ).

The full result follows by Wolff reiteration [92, Theorem 1].

Proposition 5.1.31 (Interpolation of Z-spaces). Let p and q be exponents which
are not both infinite, and let θ ∈ (0, 1). Then we have

(Zp, Zq)θ,pθ = Z [p,q]θ

with equivalent quasinorms, where pθ = i([p,q]θ). Furthermore if i(p), i(q) ≥ 1,
then we have

[Zp, Zq]θ = Z [p,q]θ .

Proof. The real interpolation result follows from Theorem 5.1.30 along with the
reiteration theorem for real interpolation [22, Theorem 5.2.4]. The complex in-
terpolation result is proven by Barton and Mayboroda via the dyadic character-
isation of the norm [21, Theorem 4.13].

Remark 5.1.32. The Z-spaces can be seen as Wiener amalgam spaces W (L2, Lpw)
associated to the semidirect product R+ nRn coming from the dilation action of
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the multiplicative group R+ on Rn. Topologically R+nRn = R1+n
+ , and the group

operation is given by (t, x) · (s, y) := (t+ s, x+ ty). Thus many of the properties
above can be deduced from properties of abstract Wiener amalgam spaces. For a
review of these spaces, see [45] and the references therein. However, if we were to
use Wiener amalgam space arguments, we would not obtain any results for quasi-
Banach Z-spaces (as the abstract theory of quasi-Banach Wiener amalgam spaces
seems not to have been sufficiently developed), and we would not obtain absolute
convergence of L2 duality pairings (only abstract duality pairings). Furthermore,
these arguments would not show the connection with tent spaces.

5.1.4 Unification: tent spaces, Z-spaces, and slice spaces

Tent spaces and Z-spaces share the same fundamental properties. To make this
totally explicit, we will write X as a placeholder for either T or Z when a state-
ment holds for tent spaces and Z-spaces. When considering two different spaces,
either of which can be a tent space or a Z-space independently, we will use sub-
scripts X0, X1. For example, one can concisely write the conclusions of Theorem
5.1.30 and Proposition 5.1.31 as

(Xp, Xq)θ,pθ = Z [p,q]θ ,

and the tent space and Z-space duality results can be written extremely concisely
as

(Xp)′ = Xp′ .

In this section we establish further properties of tent spaces and Z-spaces, in-
cluding some interrelations between the two.

First, we simply point out that for all s ∈ R we have

X2
s = L2

s(R1+n
+ ),

where
||f ||L2

s
:=
∣∣∣∣∣∣κ−sf ∣∣∣∣∣∣

L2(R1+n
+ )

. (5.15)

The following embedding theorem extends Theorem 5.1.11 not only to Z-
spaces, but also to combinations of tent and Z-spaces.

Theorem 5.1.33 (Mixed embeddings). Let X0, X1 ∈ {T, Z} and let p ↪→ q with
p 6= q. Then we have the embedding

(X0)p ↪→ (X1)q.
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Proof. When X0 = X1 = T , this is Theorem 5.1.11.
Let r = [p,q]2, so that p ↪→ r and [p, r]1/2 = q (by Lemmas 5.1.1 and 5.1.2).

Then we have embeddings Tp ↪→ Tp (trivially) and Tp ↪→ T r (Theorem 5.1.11).
Therefore we have

Tp ↪→ (Tp, T r)1/2 = Z [p,r]1/2 = Zq

by Theorem 5.1.30, using that p 6= q and p ↪→ q imply θ(p) 6= θ(q). Similarly,
putting s = [p,q]−1, we have T s ↪→ T q and T q ↪→ T q, so

Zp = (T s, T q)1/2 ↪→ T q.

Finally, putting t = [p,q]1/2 and using the previous results, we have

Zp ↪→ T t ↪→ Zq,

which completes the proof.

We also have a convenient mixed embedding which only holds for infinite
exponents.

Lemma 5.1.34. Suppose that p is infinite. Then Tp ↪→ Zp.

Proof. Let f ∈ L0(R1+n
+ ) and write p = (∞, s;α). For λ > 0 sufficiently large

and for all (t, x) ∈ R1+n
+ ,

ˆ̂
Ω(1,2)(t,x)

|τ−(α+s)f(τ, ξ)|2 dξ dτ
1/2

'

t−n−2α
¨

Ω(1,2)(t,x)
|τ−sf(τ, ξ)|2 dξ dτ

τ

1/2

. t−α
(
t−n
¨
T (B(x,λt))

|τ−sf(τ, ξ)|2 dξ dτ
τ

)1/2

.

Taking suprema over (t, x) ∈ R1+n
+ yields

||f ||Zp . ||f ||Tp .

Proposition 5.1.35 (Density of intersections). Let p and q be exponents, and let
X1, X2 ∈ {T, Z}. If p is finite then (X1)p ∩ (X2)q is dense in (X1)p. Otherwise,
(X1)p ∩ (X2)q is weak-star dense in (X1)p.
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Proof. This follows immediately from the fact that L2
c(R1+n

+ ) is (weak-star) dense
in T r for (infinite) exponents r, and likewise in Zr (this can be proven directly,
or by real interpolation, or by the embeddings of Theorem 5.1.33).

For all r ∈ R+, define a ‘downward shift’ operator Sr on L0(R1+n
+ ) by

(Srf)(t, y) := f(t+ r, y)

for all f ∈ L0(R1+n
+ ). These operators are well-behaved on certain tent spaces

and Z-spaces, as shown in the following proposition.

Proposition 5.1.36 (Uniform boundedness of downward shifts). Let p be an
exponent.

(i) If i(p) ≤ 2 and θ(p) < −1/2, then the operators (Sr)r∈R+ are uniformly
bounded on Xp.

(ii) If i(p) ∈ (2,∞] and r(p) < −(n + 1)/2, then the operators (Sr)r∈R+ are
uniformly bounded on Xp.

Remark 5.1.37. Note that the assumptions for i(p) ≤ 2 and i(p) > 2 are quite
different: there is a sudden jump in dimensional dependence at i(p) > 2. We
do not currently have a good explanation for this behaviour, and there is no
interpolation procedure to obtain stronger results when 2 < i(p) < ∞. Note
that we can include endpoints when considering tent spaces (i.e. we can include
θ(p) = −1/2 or r(p) = −(n + 1)/2 respectively). However, to realise the spaces
Zp as interpolants of tent spaces, we need to interpolate between tent spaces
Tp0 and Tp1 with θ(p0) 6= θ(p1), and so the endpoint Z-space results cannot be
proven by this argument.

Proof. It suffices to prove the tent space results; the Z-space results follow by
real interpolation.

First we will prove boundedness on tent spaces for i(p) ≤ 1 and for i(p) = 2;
the rest of part (i) follows by complex interpolation. Suppose p = (p, s) with
p ≤ 1 and let a be a Tp-atom associated with a ball B of radius rB. Then Sra is
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supported on T (B), and we have

||Sra||T 2
s
'
(ˆ rB−r

0

ˆ
Rn
t−2s−1|a(t+ r, x)|2 dx dt

)1/2

≤
(ˆ rB−r

0

ˆ
Rn

(t+ r)−2s−1|a(t+ r, x)|2 dx dt
)1/2

=
(ˆ rB

r

ˆ
Rn
|τ−sa(τ, x)|2 dx dτ

τ

)1/2

≤ ||a||T 2
s

≤ |B|δp,2

using that −2s − 1 > 0. Therefore Sra is, up to a uniform constant, a Tp-atom
associated with B. Hence if f = ∑

k∈N λkak is an atomic decomposition of f in
Tp, then Srf = ∑

k∈N λk(Srak) is an atomic decomposition of Srf in Tp up to
a uniform constant. Therefore the operators (Sr)r∈R+ are uniformly bounded on
Tp. A similar argument (without needing atoms) works for p = (2, s) provided
s < −1/2.

Now let p = (p, s) with p ∈ (2,∞) and s < −(n+ 1)/2, and fix f ∈ L0(R1+n
+ ).

First we estimate Srf in Tp:

||Srf ||Tp =
ˆ

Rn

(¨
Γ(x)

t−2s−n−1|f(t+ r, y)|2 dy dt
)p/2

dx

1/p

≤

ˆ
Rn

(¨
Γ(x)

(t+ r)−2s−n−1|f(t+ r, y)|2 dy dt
)p/2

dx

1/p

=
ˆ

Rn

(¨
Γ(x)+r

τ−2s−n−1|f(τ, y)|2 dy dτ
)p/2

dx

1/p

≤ ||f ||Tp

using that −2s−n− 1 > 0 and Γ(x) + r ⊂ Γ(x), where Γ(x) + r is the ‘vertically
translated cone’

Γ(x) + r := {(t, y) ∈ R1+n
+ : (t− r, y) ∈ Γ(x)}.

This proves part (ii) in the case where p is finite.
Now suppose p = (∞, s;α) with s+α < −(n+1)/2, and let B = B(c, R) ⊂ Rn
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be a ball. If r ≤ R, then we can write

R−α−n/2
(¨

T (B)
t−2s−1|f(t+ r, y)|2 dy dt

)1/2

≤ R−α−n/2
(¨

T (B)
(t+ r)−2s−1|f(t+ r, y)|2 dy dt

)1/2

. (R + r)−α−n/2
(¨

T (B(c,R+r))
τ−2s−1|f(τ, y)|2 dy dτ

)1/2

. ||f ||T∞s

using that −2s− 1 > 0. If r > R then instead we write

R−α−n/2
(¨

T (B)
t−2s−1|f(t+ r, y)|2 dy dt

)1/2

= R−α−n/2
(¨

T (B)+r
τ−2s−1

(
τ − r
τ

)−2s−1
|f(τ, y)|2 dy dτ

)1/2

≤ R−α−n/2
(
R

r

)−s−1/2 (¨
T (B)+r

τ−2s−1|f(τ, y)|2 dy dτ
)1/2

≤
(
R + r

R

)α+n/2 (R
r

)−s−1/2
||f ||T∞α

. ||f ||T∞α

using that s+α ≤ −(n+1)/2 in the last line, where T (B)+r is defined analogously
to Γ(x)+r. These estimates imply that ||Srf ||T∞α . ||f ||T∞α as desired, completing
the proof.

Now we shall define the slice spaces. These were introduced in connection
with tent spaces and boundary value problems by Auscher and Mourgoglou [15].
The name comes from the fact that functions in slice spaces are, roughly speak-
ing, horizontal ‘slices’ of functions in tent or Z-spaces (this is made precise in
Proposition 5.1.39).

Definition 5.1.38. Suppose p is an exponent and t > 0. For f ∈ L0(Rn) we
define

||f ||Ep(t) := t−r(p)
∣∣∣∣∣∣x 7→ ||f ||L2(B(x,t),dy/tn)

∣∣∣∣∣∣
Li(p)(Rn)

.

These quasinorms define the slice spaces

E
i(p)
r(p)(t) = Ep(t) = Ep(t)(Rn) := {f ∈ L0(Rn) : ||f ||Ep(t) <∞}.
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For t > 0, h > 3/2 (this technical restriction corresponds to that in the
definition of Whitney parameter) and f ∈ L0(Rn), define ιt,h(f) ∈ L0(R1+n

+ ) by
setting

ιt,h(f)(s, x) := f(x)1[t,ht](s)

for all (s, x) ∈ R1+n
+ , and for g ∈ L0(R1+n

+ ) define πt(g) ∈ L0(Rn) by

πt,h(g)(x) :=
ˆ ht

t

g(s, x) ds
s
.

for all x ∈ Rn.

Proposition 5.1.39. For all exponents p, the operators

Ep(t) ιt,h−→ Xp πt,h−→ Ep(t),

are bounded uniformly in t. Furthermore, the compositions of these operators are
identity maps.

Proof. The tent space results with θ(p) = 0 are already stated in [15, §3]; the
extension to all tent spaces is simple. Likewise, the composition statement is
clear. The proof for Z-spaces is a straightforward (one page) argument that we
omit.

Therefore we can view the spaces Ep(t) as retracts of Xp. Consequently,
properties of tent spaces and Z-spaces descend to slice spaces.

Proposition 5.1.40. If 0 < t0, t1 <∞ and p, q are exponents with i(p) = i(q),
then Ep(t0) = Eq(t1) with equivalent quasinorms.

This follows from change of aperture for tent spaces (see [15, Lemma 3.5]). For
p ∈ (0,∞] we write Ep := Ep(1) for any p with i(p) = p; all Ep(t) quasinorms
are equivalent to the Ep quasinorm (but not uniformly in t or p).

We have a duality theorem for slice spaces, and of course one should notice
once more that this includes absolute convergence of the L2 duality pairing (now
on Rn rather than R1+n

+ ). This is proven in [15, Lemma 3.2].

Proposition 5.1.41 (Duality). Fix t > 0 and let p be a finite exponent.. Then
we have ˆ

Rn
|(f(x), g(x))| dx . ||f ||Ep ||g||Ep′ , (5.16)

and the L2(Rn) duality pairing identifies the Banach space dual of Ep with Ep′.
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The tent space and Z-space embedding results also descend to slice spaces,
though for slice spaces the ‘regularity’ parameters are not so important.

Proposition 5.1.42 (Embeddings). Suppose 0 < p0 ≤ p1 ≤ ∞. Then Ep0 ↪→
Ep1.

Proof. Fix p0 and p1 with i(p0) = p0, i(p1) = p1, and p0 ↪→ p1. Then we have
bounded operators

Ep0 ι1,2−→ Xp0 ↪→ Xp1 π1,2−→ Ep1

whose composition is the identity map, with the inclusion following from Theorem
5.1.33.

Slice spaces contain the Schwartz functions, and are contained in the space of
tempered distributions. This is contained in [15, Lemma 3.6].8

Proposition 5.1.43. For all p ∈ (0,∞] we have S ⊂ Ep ⊂ S ′.

We also have a straightforward integration by parts formula for functions in
slice spaces. This is proven in [15, Lemma 3.8].

Proposition 5.1.44 (Integration by parts in slice spaces). Let p be a finite
exponent and suppose that ∂ is a first-order differential operator with constant
coefficients, and let ∂∗ be the adjoint operator. If f, ∂f ∈ Ep and g, ∂∗g ∈ Ep′,
then ˆ

Rn
(∂f(x), g(x)) dx =

ˆ
Rn

(f(x), ∂∗g(x)) dx.

Finally, we have an equivalent dyadic quasinorm for the slice spaces. This
follows from the dyadic characterisation of Z-spaces (Proposition 5.1.19 and the
remark following it) and Proposition 5.1.39.

Proposition 5.1.45 (Dyadic characterisation). For all p ∈ (0,∞] we have

||f ||Ep '
∣∣∣∣∣∣(||f ||L2(Q))Q∈D1

∣∣∣∣∣∣
`p(D1)

where D1 is the grid of standard dyadic cubes in Rn with sidelength 1.

Remark 5.1.46. The slice spaces Ep are equal to the Wiener amalgam spaces

W (L2, Lp)(Rn)

when p ≥ 1 (see [45] and the references therein). Therefore, as with Z-spaces,
many properties of slice spaces can be deduced from properties of Wiener amal-
gam spaces. In order to emphasise the connection with tent spaces and Z-spaces,
we have proven these results in this context.

8Only the case p < ∞ is included there, but everything (except the density statement)
extends to p =∞.
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5.1.5 Homogeneous smoothness spaces

We will only give a quick definition of these, and state a few properties that we
will need. These definitions are special cases of the Littlewood–Paley definitions
of Triebel–Lizorkin and Besov spaces; we will not need these in full generality. For
more information the reader can consult Grafakos [42, Chapter 6] or the many
works of Triebel (for example [90, §5]).

Let Z(Rn) ⊂ S(Rn) be the set of Schwartz functions f such that Dαf(0) = 0
for every multi-index α, and let Z ′(Rn) be the topological dual of Z(Rn). The
space Z ′(Rn) can be identified with the quotient space S ′(Rn) \ P(Rn), where
P(Rn) is the space of polynomials on Rn.

Definition 5.1.47. Let Ψ ∈ S(Rn) be a radial bump function with

Ψ̂ ≥ 0, supp Ψ̂ ⊂ A(0, 6/7, 2), and Ψ̂|A(0,1,12/7) = 1

(of course these precise parameters are not so important), and for j ∈ Z let ∆j

denote the associated Littlewood–Paley operators.
For f ∈ Z ′(Rn), α ∈ R, and 0 < p <∞ define

||f ||Ḣp
α

:=
∣∣∣∣∣∣∣∣∣∣∣∣∣∣j 7→ 2jα(∆jf)(·)

∣∣∣∣∣∣
`2(Z)

∣∣∣∣∣∣∣∣
Lp(Rn)

,

and for 0 < p ≤ ∞ define

||f ||Ḃp,pα :=
∣∣∣∣∣∣j 7→ 2jα ||∆j(f)||Lp(Rn)

∣∣∣∣∣∣
`p(Z)

.

The homogeneous Hardy–Sobolev spaces Ḣp
α = Ḟ p,2

α and Besov spaces Ḃp,p
α are

then the sets of those f ∈ Z ′(Rn) for which the corresponding quasinorms are
finite.

These quasinorms are independent of the choice of Ψ (up to equivalence), and
Ḣp
α and Ḃp.p

α are Banach spaces (quasi-Banach when p < 1).

For f ∈ Z ′(Rn) and α ∈ R, the Riesz potential Iαf ∈ Z ′(Rn), defined by

Iαf(x) := (|ξ|sf̂(ξ))∨(x),

is well-defined. These operators can be used to characterise the Hardy–Sobolev
spaces when p > 1.

Theorem 5.1.48. Suppose 1 < p < ∞ and α ∈ R. Then f ∈ Z ′(Rn) is Ḣp
α if

and only if Iαf ∈ Lp, and ||Iαf ||Lp is an equivalent norm on Ḣp
α. Furthermore,

for all s ∈ R, Iα is an isomorphism from Ḣp
s to Ḣp

s+α.
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We will need characterisations of the Hardy–Sobolev and Besov spaces by
integrals of differences. For all p ∈ [1,∞], g ∈ L0(Rn), and s ∈ R, define

Dpsg(x) :=
(ˆ

Rn

|g(x+ y)− g(x)|p
|y|n+ps dy

)1/p

(x ∈ Rn).

Lemma 5.1.49. Suppose α ∈ (0, 1) and p ∈ (2n/(n + α),∞). Then for all
f ∈ L2(Rn) we have

||f ||Ḣp
α
'
∣∣∣∣∣∣D2

αf
∣∣∣∣∣∣
Lp
. (5.17)

Proof. Whenever f = Iαϕ for some ϕ ∈ C∞c , the estimate (5.17) follows from a
lemma of Stein [85, Lemma 1] combined with the Riesz potential characterisation
of Ḣp

α (Theorem 5.1.48). A density argument, using the fact that elements of Ḣp
α

may be represented as L2
loc functions when α ∈ (0, 1), completes the proof.

The corresponding characterisation for Besov spaces can be found in [90, The-
orem 5.2.3.2].

Theorem 5.1.50. Suppose α ∈ (0, 1) and p ∈ [1,∞). Then for all f ∈ L2(Rn)
we have

||f ||Ḃp,pα ' ||D
p
αf ||Lp .

For α > 0, the Besov space Ḃ∞,∞α can be identified with the more familiar
homogeneous Hölder–Lipschitz space Λ̇α(Rn). We will only use this space when
α ∈ (0, 1), and in this range Λ̇α(Rn) has a simple characterisation: it is the space
of functions f on Rn such that

||f ||Λ̇α := sup
x,y∈Rn

|f(x)− f(y)|
|x− y|α

<∞,

modulo constants. Such functions are automatically continuous.
We will also need to consider the Triebel–Lizorkin spaces Ḟ∞,2α for α ∈ R,

which are the subspaces of Z ′(Rn) determined by the quasinorms

||f ||Ḟ∞,2α
:= inf

∣∣∣∣∣∣∣∣∣∣∣∣∣∣j 7→ 2jα|fj(·)|
∣∣∣∣∣∣
`2(Z)

∣∣∣∣∣∣∣∣
L∞(Rn)

,

with infima taken over all decompositions

f =
∑
j∈Z

∆jfj

with each fj ∈ L∞(Rn), where ∆j are Littlewood–Paley operators as in Definition
5.1.47. When α ≥ 0 these may be identified with the homogeneous BMO-Sobolev
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spaces ˙BMOα(Rn), which are defined as the images of BMO(Rn) under the Riesz
potentials Iα defined above, as subspaces of Z ′(Rn), with a corresponding norm.
Of course ˙BMO0(Rn) = BMO(Rn). Information on these spaces can be found
in [87] and [90, §5.1.4]. In particular, we have the following characterisation of

˙BMOα(Rn) for α ∈ (0, 1) due to Strichartz [87, Theorem 3.3].

Theorem 5.1.51. Suppose α ∈ (0, 1). Then for all f ∈ L2(Rn) we have

||f || ˙BMOα ' sup
Q

(
1
|Q|

ˆ
Q

ˆ
Q

|f(x)− f(y)|2
|x− y|n+2α dy dx

)1/2

,

where the supremum may be taken over all cubes or all balls.

We will introduce some unconventional but useful notation for these spaces.
For a finite exponent p = (p, s), define

Hp := Ḣp
s = Ḟ p,2

s and Bp := Ḃp,p
s .

For p = (∞, s; 0), define

Hp := Ḟ∞,2s and Bp := Ḃ∞,∞s .

When s > 0 we have Hp = ˙BMOs and Bp = Λ̇s. Finally, for p = (∞, s;α) with
α > 0, define

Hp := Bp := Ḃ∞,∞s+α .

As a consequence of these definitions and the various duality identifications for
classical smoothness spaces, for all finite exponents p we have

(Xp)′ = Xp′

whenever X denotes either H or B.
We also have the following interpolation theorem. This is a combination of

standard results (see for example Mendez and Mitrea [73, Theorem 11], Triebel
[88, Theorems 8.1.3 and 8.3.3a]), and Bergh and Löfström [22, Theorem 6.4.5]).9

Theorem 5.1.52. Let p and q be finite exponents, and suppose θ ∈ (0, 1) and
pθ := i([p,q]θ). Then we have

[Hp,Hq]θ = H[p,q]θ

9The results cited in [88] and [22] are for inhomogeneous spaces. As always, essentially the
same technique proves the result for homogeneous spaces. To obtain the stated results for Besov
spaces with θ(p) = θ(q), write Ḃp,pθ = Ḟ p,pθ and use the interpolation results for Triebel-Lizorkin
spaces.
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and (also allowing infinite exponents)

[Bp,Bq]θ = B[p,q]θ and (Bp,Bq)θ,pθ = B[p,q]θ .

Furthermore if θ(p) 6= θ(q), then we have

(Hp,Hq)θ,pθ = B[p,q]θ .

5.2 Operator-theoretic preliminaries

5.2.1 Bisectorial operators and holomorphic functional cal-
culus

The material of this section is not new, but we present it here to fix notation.
Useful standard references are [70, 71, 2, 43], and a particularly nice recent ex-
position which focuses on bisectorial operators on Banach spaces is contained in
the thesis of Egert [36, Chapter 3].

Let 0 < ω < π/2. The open bisector of angle ω is the set

Sω := {z ∈ C \ {0} : | arg(z)| < ω or | arg(−z)| < ω} ⊂ C,

where the argument arg(z) takes values in (−π, π]. The closed bisector of angle
ω is the topological closure Sω of Sω in C.

Throughout this section we will write L2 = L2(Rn).

Definition 5.2.1. Let 0 ≤ ω < π/2. A closed linear operator A on L2 is called
bisectorial of angle ω if σ(A) ⊂ Sω, and if for all µ ∈ (ω, π/2) and all z ∈ C \ Sµ
we have the resolvent bound∣∣∣∣∣∣(z − A)−1

∣∣∣∣∣∣
L(L2)

.µ |z|−1. (5.18)

Note that closedness of A is included in this definition. This is not standard,
but it is convenient. Generally the precise angle ω is not important, in which
case we will simply refer to A as bisectorial.

The following proposition is proven in [36, Proposition 3.2.2] (except for the
adjoint statement, which is a simple computation).

Proposition 5.2.2. Let A be a bisectorial operator on L2. Then A is densely-
defined, and we have a topological (not necessarily orthogonal) splitting

L2 = N (A)⊕R(A). (5.19)

Furthermore, A∗ is also bisectorial.
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The procedure of constructing an operator ϕ(A) from a given bisectorial oper-
ator A and holomorphic function ϕ on an appropriate bisector, known as holomor-
phic functional calculus, plays a central role in this work. In order to introduce
holomorphic functional calculus properly, we must first define some classes of
holomorphic functions.

For an angle µ ∈ (0, π/2), the set of holomorphic functions ϕ : Sµ → C is
denoted by H(Sµ). For σ, τ ∈ R and ϕ ∈ H(Sµ) we define

||ϕ||Ψτσ(Sµ) = ||z 7→ ϕ(z)/mτ
σ(|z|)||L∞(Sµ)

(the function mτ
σ is defined in Section 4.3) and

Ψτ
σ(Sµ) := {ϕ ∈ H(Sµ) : ||ϕ||Ψτσ(Sµ) <∞}.

Each Ψτ
σ(Sµ) is a Banach space when normed by ||·||Ψτσ(Sµ), and consists of those

holomorphic functions on Sµ which decay of order σ at 0 and of order τ at ∞.10

An important special case is Ψ0
0(Sµ) = H∞(Sµ), the set of bounded holomorphic

functions on Sµ. We will usually surpress reference to Sµ in this notation, as the
relevant bisector is generally clear from context.

The spaces Ψτ
σ are decreasing in σ and τ , in the sense that if σ < σ′ and

τ < τ ′, then Ψτ ′
σ′ ↪→ Ψτ

σ. For σ, τ ∈ R we define the set

Ψτ+
σ :=

⋃
τ ′>τ

Ψτ ′

σ ,

and we define the sets Ψτ
σ+ and Ψτ+

σ+ analogously. The set Ψ+
+ := Ψ0+

0+ is particu-
larly important: it is the set of holomorphic functions (on the relevant bisector)
with polynomial decay of some positive order at 0 and ∞. We also define

Ψ∞σ :=
⋂
τ

Ψτ
σ,

the set of functions with polynomial decay of arbitrarily large order at ∞. Simi-
larly we can define Ψτ

∞, Ψ∞∞, Ψ∞σ+, and so on.
There are a few holomorphic functions which we will use extensively. We

define χ+, χ− ∈ H∞ by

χ+(z) := 1z:Re(z)>0(z) and χ−(z) := 1z:Re(z)<0(z) (z ∈ Sµ); (5.20)

these are the indicator functions of the two halves of the bisector Sµ. We also
define

[z] :=

 z (Re(z) > 0)
−z (Re(z) < 0)

= (χ+(z)− χ−(z))z.

10Decay of negative order is interpreted as growth.
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This lets us define a bounded version of the exponential map,

sgp := [z 7→ e−[z]] ∈ Ψ∞0 , (5.21)

which will be used characterise solutions to Cauchy–Riemann systems in Chapter
7. For λ ∈ R \ {0} we may also define the power function

[z 7→ zλ] ∈ Ψ−λλ

via a branch cut on the half-line i(−∞, 0] ⊂ C.
We say that a function ϕ ∈ H(Sµ) is nondegenerate if it does not vanish on any

open subset of Sµ. All the holomorphic functions defined above are nondegenerate
except for χ+ and χ−.

Let us introduce some useful operations on holomorphic functions. Let ϕ ∈
H(Sµ). There is a natural involution ϕ 7→ ϕ̃ on H(Sµ) defined by

ϕ̃(z) := ϕ(z) (z ∈ Sµ).

This involution is isometric on Ψτ
σ for all σ, τ ∈ R. For t > 0 we define the dilation

ϕt ∈ H(Sµ) by
ϕt(z) := ϕ(tz).

The following lemma is a simple consequence of the above definitions.

Lemma 5.2.3. Let σ ∈ R. Then for all t > 0 we have

||ϕt||Ψ−σσ = tσ ||ϕ||Ψ−σσ .

Fix an angle ω ∈ [0, π/2) and let A be an ω-bisectorial operator on L2. If
µ ∈ (ω, π/2) and ϕ ∈ Ψ+

+(Sµ), then we can define an operator ϕ(A) on L2 by the
Cauchy integral

ϕ(A)f := 1
2πi

ˆ
∂Sν

ϕ(z)(z − A)−1f dz (f ∈ L2) (5.22)

for any choice of ν ∈ (ω, µ), where ∂Sν is oriented counterclockwise. Then the
integral (5.22) is well-defined and independent of the choice of ν, and we have

||ϕ(A)||L(L2) .A,σ,τ,µ ||ϕ||Ψτσ(Sµ) .

The proof is straightforward; we mention only that independence of ν fol-
lows from Cauchy’s integral theorem. The following homomorphism property
also holds: when ϕ, ψ ∈ Ψ+

+, we have (ϕψ)(A) = ϕ(A)ψ(A). Straightforward
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manipulations show that for all ψ ∈ Ψ+
+, the adjoint operator ψ(A)∗ is given by

ψ̃(A∗).
Often it is convenient to assume that the operator A is injective and has

dense range. In the context in which we work this generally does not hold, but
the splitting L2 = N (A)⊕R(A) from Proposition 5.2.2 shows that the restriction
A|R(A), acting on the Hilbert space R(A) (with inner product induced by that
of L2(Rn)), is injective and has dense range. One can also show that A|R(A) is
bisectorial.

The integral in (5.22) converges whenever ϕ ∈ Ψ+
+, but if ϕ ∈ H∞ is merely

bounded, convergence is not guaranteed. We would like to be able to construct
operators ϕ(A) when ϕ ∈ H∞. For certain operators this is possible.

Definition 5.2.4. Let A be a bisectorial operator on L2. We say that A has
bounded H∞ functional calculus on R(A) if for all ϕ ∈ Ψ+

+ and all f ∈ R(A), we
have the estimate

||ϕ(A)f ||L2 . ||ϕ||∞ ||f ||L2(Rn) .

The property of having boundedH∞ functional calculus onR(A) is equivalent
to certain quadratic estimates being satisfied; this is an important theorem due
to McIntosh (see [70, §7 and §8] and the other references at the start of this
section).

Theorem 5.2.5 (McIntosh). Let A be a bisectorial operator on L2. Then A has
bounded H∞ functional calculus on R(A) if and only if the estimate

||f ||L2 'ψ
(ˆ ∞

0
||ϕt(A)f ||2L2

dt

t

)1/2

(5.23)

holds for all f ∈ R(A) and some (equivalently, all) nondegenerate ϕ ∈ Ψ+
+.

Note that the quadratic estimate (5.23) need not hold for ϕ ∈ H∞.
If A has bounded H∞ functional calculus on R(A), then for all ϕ ∈ H∞ we

can define a bounded operator ϕ(A) on R(A) by

ϕ(A)f := lim
α
ϕα(A)f (f ∈ R(A)), (5.24)

where (ϕα) is a net in Ψ+
+ which converges to ϕ in H∞. We then have

||ϕ(A)||L(R(A)) . ||ϕ||H∞ .

Furthermore, for ϕ, ψ ∈ H∞, we have the homomorphism property ϕ(A)ψ(A) =
(ϕψ)(A). For further details of this construction see [70, 71]. Thus we may define
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bounded operators χ±(A) and e−t[A] = sgpt(A) (for all t > 0) on R(A), using the
corresponding H∞ functions defined in (5.20) and (5.21).

If ϕ ∈ Ψ0
+, then we can extend ϕ(A) from R(A) to all of L2 by

ϕ(A)f := ϕ(A)PR(A)f,

where PR(A) is the projection onto R(A) associated with the decomposition L2 =
N (A)⊕R(A). The operator ϕ(A) then maps L2 into R(A). We have

||ϕ(A)||L(L2) .
∣∣∣∣∣∣PR(A)

∣∣∣∣∣∣
L(L2)

||ϕ(A)||L(R(A)) ,

and furthermore the homomorphism property ψ(A)ϕ(A) = (ψϕ)(A) continues to
hold for all ψ ∈ H∞.

We refer to the operators χ+(A) and χ−(A) as the positive and negative spec-
tral projections associated with A. From the identities (χ±)2 = χ±, χ+χ− = 0,
and χ+ + χ− = 1Sµ for the functions χ±, we deduce the identities

(χ±(A))2 = χ±(A), χ+(A)χ−(A) = χ−(A)χ+(A) = 0, IR(A) = χ+(A)+χ−(A)

for the spectral projections as operators on R(A). Therefore χ+(A) and χ−(A)
are complementary projections in R(A) onto the positive and negative spectral
subspaces

R(A)± := χ±(A)R(A),

and we have a topological direct sum decomposition

R(A) = R(A)+ ⊕R(A)−.

We define the Cauchy operators C±A : R(A)→ L∞(R± : R(A)±) by

C±Af(t) := e−t[A]χ±(A)f. (5.25)

These are solution operators for the Cauchy problems associated with A on the
upper half-space and lower half-space, in the following sense (see [8]).

Proposition 5.2.6. Suppose that A has bounded H∞ functional calculus on
R(A). If f ∈ R(A)±, then F := C±Af solves the Cauchy problem

∂tF (t)± AF (t) = 0, F (0) = f

in C∞(R± : R(A)).
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We end this section with a discussion of unbounded operators arising from
holomorphic functional calculus, and some situations where their compositions
are bounded.

Suppose that ϕ ∈ Ψτ
σ with min(σ, τ) ≤ 0, so that the integral (5.22) need not

be absolutely convergent. We can define an unbounded operator ϕ(A) on R(A)
as follows. Fix δ > max(−σ,−τ) ≥ 0 and define ηδ ∈ Ψδ

δ by

ηδ(z) :=
(

z

(1 + z)2

)δ
.

Then ηδϕ ∈ Ψ+
+, so that the operator (ηδϕ)(A) is defined by (5.22). We also

have ηδ ∈ Ψ+
+, so ηδ(A) is also defined by (5.22), and since A is injective with

dense range on R(A), so is ηδ(A). Therefore the unbounded operator ηδ(A)−1 is
defined, with D(ηδ(A)−1) := R(ηδ(A)). We then define the unbounded operator

ϕ(A) := ηδ(A)−1(ηδϕ)(A) (5.26)

with domain

D(ϕ(A)) := {f ∈ R(A) : (ηδϕ)(A)f ∈ D(ηδ(A)−1)}.

The operator ϕ(A) is closed, densely-defined, and independent of the choice of δ.
Of course, if min(σ, τ) > 0, then we can take δ = 0 in the definition (5.26) and
recover the original definition of ϕ(A) by the Cauchy integral (5.22).

Now suppose ψ ∈ Ψτ1
σ1 and ϕ ∈ Ψτ2

σ2 . Then a quick computation shows that
ϕ(A)ψ(A) ⊆ (ϕψ)(A). Note that if σ1 +σ2 > 0 and τ1 +τ2 > 0, then the operator
(ϕψ)(A) is bounded and given by the Cauchy integral (5.22), while the operator
ϕ(A)ψ(A) is not a priori given by such a representation. This observation will
be convenient in what follows.

5.2.2 Off-diagonal estimates and the Standard Assump-
tions

For x ∈ R, write 〈x〉 := max{1, |x|}. We continue to write L2 = L2(Rn).

Definition 5.2.7. Suppose Ω ⊂ C\{0}, and let (Sz)z∈Ω be a family of operators
in L(L2). Let M ≥ 0. We say that (Sz) satisfies off-diagonal estimates of order
M if for all Borel subsets E,F ⊂ Rn, all z ∈ Ω, and all f ∈ L2,

||1FSz(1Ef)||2 .
〈
d(E,F )
|z|

〉−M
||1Ef ||2 . (5.27)
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Many families of operators constructed from first-order differential operators
(in particular, certain families of resolvents) satisfy off-diagonal estimates of some
order. The following theorem shows that certain families constructed in terms of
holomorphic functional calculus of a bisectorial operator A satisfy off-diagonal es-
timates, under the assumption that a certain resolvent family satisfies off-diagonal
estimates. This is a slight extension of [84, Proposition 2.7.1]

Theorem 5.2.8 (Off-diagonal estimates for families constructed by functional
calculus). Fix 0 ≤ ω < ν < µ < π/2, M ≥ 0, and σ, τ > 0. Let A be
an ω-bisectorial operator on L2 with bounded H∞ functional calculus on R(A),
such that ((I+λA)−1)λ∈C\Sν satisfies off-diagonal estimates of order M . Suppose
that (η(t))t>0 is a continuous family of functions in H∞(Sµ) which is uniformly
bounded.11 If ψ ∈ Ψτ

σ(Sµ), then the family of operators (η(t)(A)ψt(A))t>0 satisfies
off-diagonal estimates of order min{σ,M}, with constants depending linearly on
||ψ||Ψτσ ||η||, where ||η|| := supt>0 ||η(t)||∞, and also depending on A, M , σ, and
τ .

Proof. Fix Borel sets E,F ⊂ Rn. Because ψt(A) maps into R(A) for each t, we
can apply η(t)(A) to ψt(A)(1Ef) for each t > 0. We need to prove the estimate

||1Fη(t)(A)ψt(A)(1Ef)||2 .A,M,σ,τ ||η|| ||ψ||Ψτσ(Sµ)

〈
d(E,F )

t

〉−min{σ,M}

||1Ef ||2

for all f ∈ L2. Fix ν ′ ∈ (ν, µ) throughout the proof.
If d(E,F ) ≤ t, then 〈d(E,F )/t〉 ' 1, and so we have

||1Fη(t)(A)ψt(A)(1Ef)||2 ≤
ˆ
∂Sν′

|η(t)(z)||ψ(tz)|
∣∣∣∣∣∣1F (z − A)−1(1Ef)

∣∣∣∣∣∣
2
|dz|

(5.28)

.A ||η|| ||ψ||Ψτσ ||1Ef ||2
ˆ
∂Sν′

mτ
σ(|z|) |dz|

|z|
(5.29)

'σ,τ,M ||η|| ||ψ||Ψτσ

〈
d(E,F )

t

〉−min{σ,M}

||1Ef ||2 ,

where we used the resolvent bound coming from bisectoriality of A in (5.29).
Now suppose that d(E,F ) > t. Then, rearranging (5.28) and using the as-

11Continuity isn’t really needed here - we only assume it to avoid measurability issues.
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sumed off-diagonal estimates for ((I + λA)−1)λ∈C\Sν , we have

||1Fη(t)(A)ψt(A)(1Ef)||2

.A ||η|| ||ψ||Ψτσ ||1Ef ||2
ˆ
∂Sν′

mτ
σ(|z|)

〈
d(E,F )
t/|z|

〉−M |dz|
|z|

. ||η|| ||ψ||Ψτσ ||1Ef ||2 (I0 + I∞), , (5.30)

where
I0 :=

ˆ td(E,F )−1

0
mτ
σ(λ) dλ

λ

and

I∞ :=
ˆ ∞
td(E,F )−1

mτ
σ(λ)

(
λ

t
d(E,F )

)−M
dλ

λ
.

The integral I0 is estimated by

I0 ≤
ˆ td(E,F )−1

0
λσ

dλ

λ
'σ

(
t

d(E,F )

)σ
.M

〈
d(E,F )

t

〉−min(σ,M)

. (5.31)

To estimate I∞, we use that td(E,F )−1 ≤ 1 to write

I∞ 'M
〈
d(E,F )

t

〉−M (ˆ 1

td(E,F )−1
λσ−M

dλ

λ
+ C(τ,M)

)

where
C(τ,M) =

ˆ ∞
1

λ−τ−M
dλ

λ
.

If σ ≤M , then we have
ˆ 1

td(E,F )−1
λσ−M

dλ

λ
.σ,M

(
t

d(E,F )

)σ−M
,

and in this case

I∞ .σ,M

〈
d(E,F )

t

〉−M 〈d(E,F )
t

〉M−σ
+ C(τ,M)


.τ,M

〈
d(E,F )

t

〉−min{σ,M}

. (5.32)

Otherwise, we have ˆ 1

td(E,F )−1
λσ−M

dλ

λ
.σ,M 1,

and this also yields (5.32). Putting the estimates (5.31) and (5.32) into (5.30)
completes the proof.
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Off-diagonal estimates can also be used to deduce uniform boundedness and
convergence results for families of operators on slice spaces. These propositions
are proven in [15, §4].

Proposition 5.2.9 (Uniform boundedness of families on slice spaces). Let p ∈
(0,∞]. If (Ts)s>0 is a family of operators on L2 satisfying off-diagonal estimates
of order greater than nmin(|δp,2|, 1/2), then Ts extends to a bounded operator on
Ep

0(t) uniformly in 0 < s ≤ t.

Proposition 5.2.10 (Strong convergence in slice spaces). Let p ∈ (0,∞). Sup-
pose (Ts)s>0 is a family of operators on L2 satisfying off-diagonal estimates of
order greater than nmin(1/p, 1/2), and such that lims→0 Ts = I strongly in L2.
Then lims→0 Ts = I strongly in Ep.

Throughout the ‘abstract’ part of this work, the following assumptions will
be sufficient. They can be a bit of a mouthful if stated in full, so we give them a
name.

Definition 5.2.11. We say that an operator A satisfies the Standard Assumptions
if

• A is a ω-bisectorial operator on L2 for some ω ∈ [0, π/2),

• A has bounded H∞ functional calculus on R(A), and

• for all ν ∈ (ω, π/2) the family ((I + λA)−1)λ∈C\Sν satisfies off-diagonal
estimates of arbitrarily large order.

The main examples we have in mind are perturbed Dirac operators.

Theorem 5.2.12. Suppose D and B are as in Subsection 4.1.2 of the intro-
duction. Then the perturbed Dirac operators DB and BD satisfy the standard
assumptions (see Definition 5.2.11).

See [17, Proposition 2.1] and [16, Lemma 2.3, Propositions 3.1 and 3.2]; the
off-diagonal estimates stated there are in a different but equivalent form.

5.2.3 Integral operators on tent spaces

Let (St,τ )t,τ>0 be a continuous two-parameter family of bounded operators on
L2 = L2(Rn), and for all f ∈ L2

c(R+ : L2) define Sf ∈ L0(R+ : L2) by

Sf(t) :=
ˆ ∞

0
St,τf(τ) dτ

τ
. (5.33)
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Since f is compactly supported in R+, the Cauchy–Schwarz inequality shows that
the integral (5.33) is absolutely convergent. We write S ∼ (St,τ )t,τ>0 to say that
S is given by the kernel (St,τ )t,τ>0.

We would like know when S can be extended from L2
c(R+ : L2) to an operator

between various tent spaces and Z-spaces. A first step is given by the following
Schur-type lemma. Recall that L2

s is defined in (5.15) and coincides with X2
s .

Lemma 5.2.13. Let s, δ ∈ R, and let S ∼ (St,τ )t,τ>0 on L2 as above. Suppose
that there exists γ ∈ L1(R+ : R) (where R+ is equipped with the Haar measure
dt/t) such that for all t, τ > 0,∣∣∣∣∣∣τ−δSt,τ ∣∣∣∣∣∣L(L2)

≤ γ(t/τ)(t/τ)s+δ.

Then for all f ∈ L2
c(R+ : L2),

||Sf ||L2
s+δ

. ||γ||L1(R+) ||f ||L2
s
. (5.34)

Proof. We argue by duality. For all g ∈ L2
−(s+δ), we can estimate

|〈Sf, g〉|

≤
ˆ ∞

0

ˆ ∞
0
||St,τf(τ)||2 ||g(t)||2

dτ

τ

dt

t

≤
ˆ ∞

0

ˆ ∞
0

γ(t/τ)
∣∣∣∣∣∣τ−sf(τ)

∣∣∣∣∣∣
2

∣∣∣∣∣∣ts+δg(t)
∣∣∣∣∣∣

2

dτ

τ

dt

t

≤
(ˆ ∞

0

ˆ ∞
0

γ(t/τ) dt
t

∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣2

2

dτ

τ

)1/2

·

·
(ˆ ∞

0

ˆ ∞
0

γ(t/τ) dτ
τ

∣∣∣∣∣∣ts+δg(t)
∣∣∣∣∣∣2

2

dt

t

)1/2

≤ ||γ||L1(R+) ||f ||L2
s
||g||L2

s+δ
,

which implies (5.34).

For certain kernels (St,τ ), assuming an L2
s → L2

s+δ estimate (such as that which
could be derived from the lemma above) and some off-diagonal estimates, we are
able to deduce the boundedness of S from Tp to Tp+δ for some exponents p with
i(p) ∈ (0, 1]. This is a generalisation of an argument of Auscher, McIntosh, and
Russ [13].

Theorem 5.2.14 (Extrapolation of L2 boundedness to tent spaces). Let p =
(p, s) be an exponent with p ≤ 1, let δ ∈ R, and let (St,τ )t,τ>0 be a continuous
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two-parameter family of bounded operators on L2 such that for all t0, τ0 > 0
the one-parameter families (t−δSt,τ0)t∈(τ0,∞) and (τ−δSt0,τ )τ∈(t0,∞) both satisfy off-
diagonal estimates of order M , with implicit constant K uniform in τ0 and t0

respectively. Suppose a, b ∈ R, and let S ∼ (mb
a(t/τ)St,τ )t,τ>0.

If we have the norm estimate

||Sf ||L2
s+δ

. ||f ||L2
s

(5.35)

for all f ∈ L2
c(R+ : L2), with

− nδp,2 < b+ s < M and a > s+ δ, (5.36)

then
||Sf ||Tp+δ . ||f ||Tp

for all f ∈ L2
c(R+ : L2), and the implicit constant is a linear combination of K

and ||S|| := ||S||L2
s→L2

s+δ
.

Proof. Step 1: an estimate for compactly supported atoms. Suppose that
f is a compactly-supported Tp-atom associated with a ball B = B(c, r) ⊂ Rn.
Then f ∈ L2

c , and so Sf is defined. We will show that Sf is in Tp+δ with
quasinorm bounded independently of f . To do this we will exhibit an atomic
decomposition of Sf , and we will estimate ||Sf ||Tp+δ using the coefficients of this
decomposition.

Let T1 := T (4B) and Tk := T (2k+1B) \ T (2kB) for all integers k ≥ 2. Then
define Fk := 1TkSf for all k ∈ N, so that we have Sf = ∑∞

k=1 Fk pointwise almost
everywhere. For each k ∈ N the function Fk is supported in a tent, so we can
renormalise by writing Fk = λkfk for some λk ∈ C and some Tp+δ-atom fk. We
need only estimate the coefficients λk.

Estimate for the local part. For k = 1, since F1 is supported in T (4B),
we must estimate ||F1||L2

s+δ
in terms of |4B|δp,2 . It follows from (5.35) and the

fact that f is a Tp-atom that

||F1||L2
s+δ
≤ ||S|| |B|δp,2 'n,p ||S|| |4B|δp,2 ,

and so we can set λ1 'n,p ||S||.
Estimate for the global parts. Suppose k ≥ 2. Since Fk is supported in

the tent T (2k+1B), we must estimate ||Fk||L2
s+δ

in terms of |2k+1B|δp,2 . We use
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Minkowski’s integral inequality to estimate

||Fk||L2
s+δ

=
ˆ 2k+1r

0

∣∣∣∣∣
∣∣∣∣∣t−(s+δ)1B(c,2k+1r−t)

ˆ r

0
mb
a(t/τ)St,τf(τ) dτ

τ

∣∣∣∣∣
∣∣∣∣∣
2

L2

1/2

≤

ˆ 2k+1r

0

(ˆ r

0
t−(s+δ)mb

a(t/τ)
∣∣∣∣∣∣1A(c,2kr−t,2k+1r−t)St,τf(τ)

∣∣∣∣∣∣
L2

dτ

τ

)2
dt

t

1/2

≤
ˆ r

0

ˆ 2k+1r

0
t−2(s+δ)mb

a(t/τ)2
∣∣∣∣∣∣1A(c,2kr−t,2k+1r−t)St,τf(τ)

∣∣∣∣∣∣2
L2

dt

t

1/2
dτ

τ
.

Note that f(τ) is supported in B(c, r − τ). We have

d(supp f(τ), A(c, 2kr − t, 2k+1r − t)) ≥ d(B(c, r),Rn \B(c, 2kr − t))
= ((2k − 1)r − t)+,

so we split the region of integration (0, 2k+1r)× (0, r) into three subregions,

R1 := {(t, τ) : t < τ < r}

R2 :=
{

(t, τ) : τ < t <
2k − 1

2 r

}

R3 :=
{

(t, τ) : t > 2k − 1
2 r

}
,

and denote the corresponding integrals by I1, I2, and I3.12

On R3, where t > τ and where there is no spatial separation, we have

I3 . K

ˆ r

0

ˆ 2k+1r

2k−1
2 r

t−2(s+δ)(t/τ)−2bt2δ ||f(τ)||2L2
dt

t

1/2
dτ

τ

.b,s K

ˆ r

0

∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣
L2
τ b+s(2kr)−(b+s) dτ

τ

≤ K2−k(b+s)
(ˆ r

0

∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣2
L2

dτ

τ

)1/2 (ˆ r

0

(
τ

r

)2(b+s) dτ

τ

)1/2

'b,s K2−k(b+s) ||f ||L2
s

(5.37)

≤ K2−k(b+s)|B|δp,2

= K2−k(b+s)|2k+1B|δp,2
(
|2k+1B|
|B|

)−δp,2
' K2−k(b+s+nδp,2)|2k+1B|δp,2 ,

12The reason for using the factor (2k−1)/2 rather than 2k−1 will be apparent when estimating
I2.
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where we used b+ s > −nδp,2 > 0 in (5.37).
On R1, where t < τ and where the off-diagonal estimates for (τ−δSt,τ )τ∈(t,∞)

involve spatial separation,

I1 . K

ˆ r

0

ˆ τ

0
t−2(s+δ)(t/τ)2a

((2k − 1)r − t
τ

)−M
||f(τ)||L2

2
dt

t


1/2

τ δ
dτ

τ

'a,s,δ K2−kM
ˆ r

0

(
τ

r

)M ∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣
L2

dτ

τ
(5.38)

≤ K2−kM ||f ||L2
s

(ˆ r

0

(
τ

r

)2M dτ

τ

)1/2

.M K2−k(M+nδp,2)|2k+1B|δp,2 (5.39)

using that a > s+ δ in (5.38), and deducing (5.39) from the same argument used
for I3.

On R2, we have t > τ and the off-diagonal estimates for (t−δSt,τ )t∈(τ,∞) again
involve spatial separation, and the restrictions on t imply (2k−1)r− t > 2k−1

2 r &

2kr. Therefore

I2 . K

ˆ r

0

ˆ 2k−1
2 r

τ

t−2s(t/τ)−2b
(

(2k − 1)r − t
t

)−2M

||f(τ)||2L2
dt

t


1/2

dτ

τ

. K

ˆ r

0

∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣
L2
τ b+s

ˆ 2k−1
2 r

τ

t−2(b+s)
(

2kr
t

)−2M
dt

t


1/2

dτ

τ

.b,s,M K2−kM
ˆ r

0

∣∣∣∣∣∣τ−sf(τ)
∣∣∣∣∣∣
L2
τ b+sr−M(2kr)−(b+s−M) dτ

τ
(5.40)

.b,s K2−k(b+s+nδp,2)|2k+1B|δp,2 (5.41)

using that M > s0 + b in (5.40) and arguing as before to conclude (5.41).
Summing up, we have

||Fk||L2
s+δ
≤ I1 + I2 + I3

.a,b,M,p,s,δ K
(
2−k(M+nδp,2) + 2−k(b+s+nδp,2)

)
|2k+1B|δp,2 ,

and so for k ≥ 2 we can set

λk ' K
(
2−k(M+nδp,2) + 2−k(b+s+nδp,2)

)
,
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which implies that

||(λk)||p`p(N) ' ||S||
p +Kp

∞∑
k=2

(
2−k(M+nδp,2) + 2−k(b+s+nδp,2)

)p
≤ ||S||p +Kp

∞∑
k=2

2−kp(M+nδp,2) + 2−kp(b+s+nδp,2),

which is finite because of the assumption (5.36). The implicit constants do not
depend on the atom f . Therefore Sf is in T ps1 , with quasinorm bounded indepen-
dently of f and controlled by a linear combination of ||S|| and K.

Step 2: from compactly supported atoms to T ps ∩ L2
c(R+ : L2). This

final part of the argument exactly follows [13, Proof of Theorem 4.9, Step 3]. One
must show that every function in T ps ∩ L2

c(R+ : L2) may be decomposed into a
sum of compactly supported atoms, and that such decompositions converge in
both T ps (which is automatic) and in L2

s. We omit further details.

5.2.4 Extension and contraction operators

Throughout this section we assume that A is an operator which satisfies the
standard assumptions (see Definition 5.2.11).

Definition 5.2.15. For all ψ ∈ H∞ define the extension operator

Qψ,A : R(A)→ L∞(R+ : L2)

by
(Qψ,Af)(t) := ψt(A)f (f ∈ R(A), t ∈ R+).

If in addition ψ ∈ Ψ+
+, then Qψ,A is defined on all of L2, and by Theorem 5.2.5

we have boundedness Qψ,A : L2 → L2(R1+n
+ ).

Definition 5.2.16. For all ϕ ∈ Ψ+
+ define the contraction operator

Sϕ,A : L2(R1+n
+ )→ R(A)

by
Sϕ,A := (Qϕ̃,A∗)∗.

Note that Qψ,A = (Sψ̃,A∗)∗ when ψ ∈ Ψ+
+.

A quick computation yields the following representation of Sϕ,A. The integral
in (5.42) converges absolutely since f ∈ L1(R+ : L2(Rn)).
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Proposition 5.2.17. Suppose ϕ ∈ Ψ+
+. Then for all f ∈ L2

c(R+ : L2) we have

Sϕ,Af :=
ˆ ∞

0
ϕt(A)f(t) dt

t
. (5.42)

Fix δ ∈ R, and suppose η ∈ Ψδ
−δ, ψ ∈ H∞, and ϕ ∈ Ψ−δδ ∩ Ψ+

+. Then for all
f ∈ L2

c(R+ : L2) we have Sϕ,Af ∈ D(η(A)) and the integral representation

(Qψ,Aη(A)Sϕ,Af)(t) =
ˆ ∞

0
(ψt(A)η(A)ϕτ (A))f(τ) dτ

τ
. (5.43)

Therefore we can write

Qψ,Aη(A)Sϕ,A ∼ ((ψtηϕτ )(A))t,τ>0.

Our goal now is to check when the results of Section 5.2.3 apply to this operator.
In fact, we will be able to draw some conclusions even when η is not bounded, as
long as ψtηϕτ ∈ Ψ+

+. This will ultimately lead to Theorem 6.1.11.

Lemma 5.2.18. Suppose σ + τ ≥ 0 and δ ∈ R. Let ψ ∈ Ψτ
σ, ϕ ∈ Ψσ−δ

τ+δ , and
η ∈ Ψδ

−δ, and define the operator

S̃t,r := mτ+δ
σ (t/r)−1(ψtηϕr)(A). (5.44)

Then for all t0, r0 > 0 the operator families (t−δS̃t,r0)t∈(r0,∞) and (r−δS̃t0,r)r∈(t0,∞)

satisfy off-diagonal estimates of order σ + τ , uniformly in r0 and t0 respectively.
The implicit constants in these off-diagonal estimates depend linearly on ||η||Ψδ−δ .

This is a variation of [13, Lemma 3.7].

Proof. If t0 ≤ r we can write

r−δS̃t0,r = r−δ(t0/r)−σ[ψt0(z)η(z)ϕr(z)](A)
= [(t0z)−σψt0(z)ηδ(z)(rz)σ−δϕτ (z)](A)

where ηδ ∈ H∞ is defined by ηδ(z) := zδη(z). Note that
∣∣∣∣∣∣ηδ∣∣∣∣∣∣

∞
= ||η||Ψδ−δ . Since

ψ ∈ Ψτ
σ and σ + τ ≥ 0, the function

γ(t0) : z 7→ (t0z)−σψt0(z)ηδ(z)

is in H∞ with bound uniform in t0, linear in ||η||Ψδ−δ , and clearly independent of
r. Furthermore, the function θ : z 7→ zσ−δϕ(z) is in Ψ0

σ+τ , and so we can write

r−δS̃t0,r = γ(t0)(A)θτ (A)
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where γ(t) is uniformly in H∞ and θ ∈ Ψ0
σ+τ . Theorem 5.2.8 then implies that

the family (S̃t0,r)r∈(t0,∞) satisfies off-diagonal estimates of order σ + τ uniformly
in t0 > 0, with implicit constants linear in ||η||∞.

Likewise, if r0 ≤ t we can write

t−δS̃t,r0 = t−δ(t/r0)τ+δ[ψt(z)η(z)ϕr0(z)](A)
= [(r0z)−(τ+δ)ϕr0(z)ηδ(z)(tz)τψt(z)](A)

and proceed in the same way, the consequence being that (t−δS̃t,r0)t∈(r0,∞) satisfies
off-diagonal estimates of order σ+ τ uniformly in τ0 > 0, with implicit constants
linear in ||η||Ψδ−δ .

Lemma 5.2.19. Fix s, δ ∈ R. Suppose ψ ∈ Ψ−(s+δ)+
(s+δ)+ , ϕ ∈ Ψs+

−s+, and η ∈ Ψδ
−δ.

Then the operator S ∼ ((ψtηϕr)(A))t,r>0 extends to a bounded operator L2
s →

L2
s+δ.

Proof. Fix ε > 0 such that ψ ∈ Ψε−(s+δ)
ε+s+δ and ϕ ∈ Ψε+s

ε−s. First note that ψtηϕr ∈
Ψ+

+, so the operators St,r := (ψtηϕr)(A) are all bounded and defined by the
integral (5.22) on L2. We will make use of Lemma 5.2.13, so we write r = κt and
begin by estimating∣∣∣∣∣∣r−δSt,r∣∣∣∣∣∣L(L2(Rn))

.ψ,ϕ (κt)−δ
∣∣∣∣∣∣η1/t

∣∣∣∣∣∣
Ψδ−δ

ˆ ∞
0

mε−s
ε+s(tλ)mε+s

ε−s(κtλ) dλ
λ

≤ κ−δ ||η||Ψδ−δ

ˆ ∞
0

mε−s
ε+s(λ)mε+s

ε−s(κλ) dλ
λ
. (5.45)

using Lemma 5.2.3 to eliminate the powers of t in (5.45). If κ ≤ 1, we have

κ−δ
ˆ ∞

0
mε−s
ε+s(λ)mε+s

ε−s(κλ) dλ
λ

= κ−δ
(
κε−s
ˆ 1

0
λ2ε dλ

λ
+ κε−s

ˆ 1/κ

1

dλ

λ
+ κ−ε−s

ˆ ∞
1/κ

λ−2ε dλ

λ

)
. κε−s−δ(2 + log(1/κ)).

If κ ≥ 1, then by the same argument we have

κ−δ
ˆ ∞

0
mε−s
ε+s(λ)mε+s

ε−s(κλ) dλ
λ

. κ−ε−s−δ(2 + log(κ)).

Since the function

γ(κ) :=

 κε(2 + log(1/κ)) (κ ≤ 1)
κ−ε(2 + log(κ)) (κ ≥ 1)

is in L1(R+), Lemma 5.2.13 completes the proof.
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The following theorem is the basis of Chapter 6. From the viewpoint of
applications, the important part of this theorem is the decay condition on ψ at
0. We would particularly like to take ψ = sgp ∈ Ψ∞0 and δ = 0, which is possible
provided that i(p) ≤ 2 and θ(p) < 0.

Theorem 5.2.20 (Boundedness of contraction/extension compositions). Sup-
pose p is an exponent, δ ∈ R and η ∈ Ψδ

−δ. Suppose that either

• i(p) ≤ 2 and

ψ ∈ Ψ(−(θ(p)+δ)+n| 12−j(p)|)+
(θ(p)+δ)+ ∩H∞ and ϕ ∈ Ψθ(p)+

(−θ(p)+n| 12−j(p)|)+ ∩Ψ+
+,

(5.46)
or

• i(p) ≥ 2 and

ψ ∈ Ψ(−θ(p))+
(θ(p)+n| 12−j(p)|)+ ∩Ψ+

+ and ϕ ∈ Ψ(θ(p)−δ+n| 12−j(p)|)+
(−θ(p)+δ)+ ∩Ψ+

+.

then Qψ,Aη(A)Sϕ,A extends to a bounded operator Xp → Xp+δ (by duality when
i(p) =∞), with bounds linear in ||η||Ψδ−δ .

Proof. We will only prove the result for tent spaces. The Z-space result can
be deduced by real interpolation, or alternatively it can be proven directly via
the dyadic characterisation of Proposition 5.1.19. Furthermore, the result for
i(p) ≥ 2 follows from the result for i(p) ≤ 2 by duality, so we need only prove
the result for i(p) ≤ 2. Note that (5.43) and the assumptions on ψ and ϕ imply
that Qψ,Aη(A)Sϕ,A contains the integral operator with kernel ((ψtηϕτ )(A))t,τ>0,
so it suffices to work with this operator. Furthermore, the assumptions (5.46) and
(5.2.19) imply that this operator is bounded from T 2

θ(p) to T 2
θ(p)+δ, which yields

the result for i(p) = 2.
Step 1: i(p) ≤ 1. The assumptions (5.46) imply that there exists ε > 0 such

that
ψ ∈ Ψτ+ε

σ+ε and ϕ ∈ Ψ(σ+ε)−δ
(τ+ε)+δ ,

where σ := θ(p) + δ and τ := −θ(p + δ) + n|(1/2)− j(p)|. Therefore by Lemma
5.2.18, the operator families (t−δS̃t,r0)t∈(r0,∞) and (r−δS̃t0,r)r∈(t0,∞), where S̃t,r is
defined as in (5.44), satisfy off-diagonal estimates of order n|(1/2) − j(p)| + 2ε.
Theorem 5.2.14 then applies with a = σ+ε, b = τ+ε+δ, andM = 2ε+n|(1/2)−
j(p)|, and we can conclude that Qψ,Aη(A)Sϕ,A is bounded from Tp to Tp+δ.
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Step 2: i(p) ∈ (1, 2). The following argument originates from the thesis of
Stahlhut [84, Step 4, proof of Lemma 3.2.6]. For λ ∈ C, define functions ψλ and
ϕλ by

ψλ(z) :=
(

[z]
1 + [z]

)λ
ψ(z), ϕλ(z) :=

(
1

1 + [z]

)λ
ϕ(z).

If Reλ ≥ n(1 − j(p)), then Step 1 applies with exponent (1, θ(p)), and we find
that Qψλ,Aη(A)Sϕλ,A is bounded from T 1

θ(p) to T 1
θ(p)+δ. Furthermore, if Reλ ≥

−n|(1/2)− j(p)|, then the discussion of the first paragraph of the proof applies,
and we find that Qψλ,Aη(A)Sϕλ,A is bounded from T 2

θ(p) to T 2
θ(p)+δ. By Stein

interpolation in tent spaces (see [10, Proof of Lemma 3.4]), when Reλ = 0, we
have that Qψλ,Aη(A)Sϕλ,A is bounded from T pθ(p) to T pθ(p)+δ when p ∈ (1, 2) and
θ ∈ (0, 1) satisfy

1
p

= (1− θ) + θ

2 , 0 = (1− θ)(1− j(p)) + θ
(1

2 − j(p)
)
.

This occurs when p = i(p). Applying this with λ = 0 yields boundedness of
Qψ,Aη(A)Sϕ,A from Tp to Tp+δ.

Finally, we shall discuss an abstract form of the Calderón reproducing formula,
which is ubiquitous in the study of abstract Hardy spaces, and which will play
an important role in what follows.

Whenever ψ ∈ Ψ+
+ and ϕ ∈ H∞, we can define a bounded holomorphic

function
Φψ,ϕ(z) :=

ˆ ∞
0

ψt(z)ϕt(z) dt
t
, z ∈ Sµ.

This integral converges absolutely because ψϕ ∈ Ψ+
+. It is not hard to show that

Sψ,AQϕ,A = Φψ,ϕ(A)

as operators on R(A).
In [16, Proposition 4.2] it is shown that if ϕ ∈ H∞ is nondegenerate, then

there exists ψ ∈ Ψ∞∞ such that Φϕ,ψ ≡ 1. This implies the following abstract
Calderón reproducing formula.

Theorem 5.2.21. Suppose ϕ ∈ H∞ is nondegenerate. Then there exists ψ ∈ Ψ∞∞
such that

Sψ,AQϕ,A = IR(A) (5.47)

as operators on R(A). Furthermore, if ϕ ∈ Ψ+
+, then the operator Qψ,ASϕ,A is a

projection from L2(R1+n
+ ) onto Qψ,AR(A).
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We refer to a pair (ϕ, ψ), with ϕ ∈ H∞, ψ ∈ Ψ+
+ and satisfying (5.47), as

Calderón siblings.
Here is a simple example of the use of the abstract Calderón reproducing

formula.

Corollary 5.2.22. Suppose ϕ ∈ H∞ is nondegenerate. Then the extension op-
erator Qϕ,A : R(A)→ L2(R+ : R(A)) is injective.

Proof. Let ψ ∈ Ψ+
+ be a Calderón sibling of ϕ, and suppose f ∈ R(A) with

Qϕ,Af = 0. Then by (5.47) we have

f = Sψ,AQϕ,Af = 0,

and so Qϕ,A is injective.
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Chapter 6

Adapted function spaces

6.1 Adapted Hardy–Sobolev and Besov spaces

Throughout this section we will fix an operator A satisfying the standard assump-
tions (see Definition 5.2.11). As in the previous chapter, we will implicitly work
with CN -valued functions without referencing this in the notation.

6.1.1 Initial definitions, equivalent norms, and duality

The adapted Hardy–Sobolev and Besov spaces are, defined, roughly speaking,
by measuring extensions by Qψ,A in tent spaces and Z-spaces respectively. We
will soon show that the resulting function space is independent of ψ for ψ with
sufficient decay at 0 and ∞ depending on p.

Definition 6.1.1. Let ψ ∈ H∞ and let p be an exponent. We define the sets

Hp
ψ,A := {f ∈ R(A) : Qψ,Af ∈ Tp},

Bp
ψ,A := {f ∈ R(A) : Qψ,Af ∈ Zp},

equipped with quasinorms1∣∣∣∣∣∣f | Hp
ψ,A

∣∣∣∣∣∣ := ||Qψ,Af ||Tp ,∣∣∣∣∣∣f | Bp
ψ,A

∣∣∣∣∣∣ := ||Qψ,Af ||Zp .

We call these spaces pre-Hardy–Sobolev and pre-Besov spaces associated with A
(respectively), and we call ψ an auxiliary function.

1These are shown to be quasinorms in Proposition 6.1.2. Of course, they are actual norms
when i(p) ≥ 1.
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Generally we will want to refer to the pre-Hardy–Sobolev and pre-Besov spaces
simultaneously. In this case we will write

Xp
ψ,A := {f ∈ R(A) : Qψ,Af ∈ Xp},

where the pair (X,X) is either (T,H) or (Z,B). This follows the convention
initiated in Subsection 5.1.4.

Proposition 6.1.2. Let ψ ∈ H∞ and let p be an exponent. Then
∣∣∣∣∣∣· | Xp

ψ,A

∣∣∣∣∣∣ is a
quasinorm on Xp

ψ,A.

Proof. The only quasinorm property which does not follow directly from linearity
of Qψ,A and the corresponding quasinorm properties ofXp is positive definiteness.
To show this, suppose f ∈ Xp

ψ,A and
∣∣∣∣∣∣f | Xp

ψ,A

∣∣∣∣∣∣ = 0. Then we have Qψ,Af = 0 in
Xp, and hence also in L2(R+ : R(A)). By injectivity of Qψ,A : R(A) → L2(R+ :
R(A)) (Corollary 5.2.22), we conclude that f = 0.

The following proposition quantifies the amount of decay needed on the aux-
iliary function ψ in order to ensure that the Xp

ψ,A quasinorm is equivalent to the
Xp
ϕ,A quasinorm whenever ϕ has decay of arbitrarily high order at 0 and ∞.

Proposition 6.1.3 (Independence on auxiliary function). Let ϕ ∈ Ψ∞∞ and ψ ∈
H∞ be nondegenerate, let p be an exponent, and suppose that either

• i(p) ≤ 2 and ψ ∈ Ψ(−θ(p)+n| 12−j(p)|)+
θ(p)+ , or

• i(p) ≥ 2 and ψ ∈ Ψ−θ(p)+
(θ(p)+n| 12−j(p)|)+ ∩Ψ+

+.

Then we have Xp
ψ,A = Xp

ϕ,A with equivalent quasinorms.

Proof. First, let ν ∈ Ψ∞∞ be a Calderón sibling of ψ. Then for f ∈ Xp
ψ,A we have∣∣∣∣∣∣f | Xp

ϕ,A

∣∣∣∣∣∣ = ||Qϕ,Af ||Xp

= ||Qϕ,ASν,AQψ,Af ||Xp

. ||Qψ,Af ||Xp (6.1)
=
∣∣∣∣∣∣f | Xp

ψ,A

∣∣∣∣∣∣ ,
where (6.1) follows from Theorem 5.2.20, by the standard assumptions along with
ϕ, ν ∈ Ψ∞∞.

Now let ν ∈ Ψ∞∞ be a Calderón sibling of ϕ. Then we can repeat the previous
argument with the roles of ϕ and ψ reversed, using the additional assumptions
on ψ to apply Theorem 5.2.20. This leads to the reverse estimate∣∣∣∣∣∣f | Xp

ψ,A

∣∣∣∣∣∣ . ∣∣∣∣∣∣f | Xp
ϕ,A

∣∣∣∣∣∣
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which completes the proof.

Definition 6.1.4. For an exponent p, we define the spaces

Xp
A := Xp

ψ,A,

where any auxiliary function ψ ∈ Ψ∞∞ may be used to define the space and its
corresponding quasinorm. We also define Ψ(Xp

A) to be the set of all nondegenerate
ϕ ∈ H∞ such that Xp

ϕ,A = Xp
A with equivalent quasinorms.

With this notation at hand, Proposition 6.1.3 tells us that

Ψ(−θ(p)+n| 12−j(p)|)+
θ(p)+ ∩H∞ ⊂ Ψ(Xp

A) (i(p) ≤ 2),

Ψ−θ(p)+
(θ(p)+n| 12−j(p)|)+ ∩Ψ+

+ ⊂ Ψ(Xp
A) (i(p) > 2).

Recall that the positive and negative spectral subspaces

R(A)± := χ±(A)R(A)

were defined and discussed in Section 5.2.1. These can be used to define corre-
sponding positive and negative spectral subspaces of Xp

A.

Definition 6.1.5. Let p be an exponent. Then we define the positive and neg-
ative pre-Hardy–Sobolev and Besov spaces by

Xp,±
A := Xp

A ∩R(A)±,

equipped with any of the equivalent Xp
A quasinorms. Often we will just refer to

these as the spectral subspaces.

In Corollary 6.1.13 we will characterise the positive and negative spaces Xp,±
A

as images of the spectral projections χ±(A).
The spaces Xp

A may also be characterised in terms of the contraction maps
Sψ,A for any ψ ∈ Ψ+

+. Recall that X2 = T 2 = Z2 = L2(R1+n
+ ).

Proposition 6.1.6 (Characterisation by contraction maps). Let p be an exponent
and let ψ ∈ Ψ+

+ be nondegenerate. Then we have

Xp
A = Sψ,A

(
X2 ∩Xp

)
, (6.2)

and the mapping

f 7→ inf{||F ||Xp : F ∈ X2 ∩Xp,Sψ,AF = f}

is an equivalent quasinorm on Xp
A.
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Proof. Fix a Calderón sibling ϕ ∈ Ψ∞∞ of ψ. First we will show the equality
(6.2). Suppose f ∈ Xp

A. Then Qϕ,Af ∈ X2 ∩Xp, and by Theorem 5.47 we have
f = Sψ,A(Qϕ,Af). Conversely, suppose that f = Sψ,AF for some F ∈ X2 ∩ Xp.
Then f ∈ R(A), and Theorem 5.47 implies that Qϕ,Af = F ∈ Xp, which shows
that f ∈ Xp

A. This proves (6.2).
Now prove the quasinorm equivalence. Suppose f ∈ Xp

A. Then f = Sψ,AQϕ,Af

with Qϕ,Af ∈ X2 ∩Xp, and so

inf{||F ||Xp : F ∈ X2 ∩Xp,Sψ,AF = f} ≤ ||Qϕ,Af ||Xp ' ||f ||Xp
A
.

Conversely, suppose F ∈ X2 ∩Xp and Sψ,AF = f . Then

||F ||Xp & ||Qϕ,ASψ,AF ||Xp

= ||Qϕ,Af ||Xp

' ||f ||Xp
A
,

completing the proof.

Corollary 6.1.7 (Density of intersections). Let p and q be exponents, and sup-
pose X1,X2 ∈ {H,B}. If p is finite then (X1)p

A ∩ (X2)q
A is dense in (X1)p

A. Oth-
erwise, (X1)p

A ∩ (X2)q
A is weak-star dense in (X1)p

A.

Proof. We will suppose that p is finite; the same argument works for infinite
p, replacing limits with weak-star limits and norms with appropriate duality
pairings.

Suppose f ∈ (X1)p
A, and fix ψ ∈ Ψ+

+. By Proposition 6.1.6 we can write
f = Sψ,AF for some F ∈ T 2 ∩ (X1)p, and by Proposition 5.1.35 we can write
F = limk→∞ Fk (limit in (X1)p) for some sequence (Fk)k∈N in T 2∩ (X1)p∩ (X2)q.
For all k ∈ N define

fk := Sψ,AFk ∈ (X1)p
A ∩ (X2)q

A.

Then we have, again using Proposition 6.1.6,

lim
k→∞
||f − fk||(X1)p

A
. lim

k→∞
||F − Fk||(X1)p = 0.

This proves the claimed density.

The pre-Hardy–Sobolev and pre-Besov spaces inherit a duality pairing from
R(A) ⊂ L2(Rn). However, we cannot say that Xp′

A∗ is the dual of Xp
A, because

in general these spaces are incomplete, while the dual of a quasinormed space is
always complete. We will deal with completions in Subsection 6.1.3.
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Proposition 6.1.8 (Duality estimate). Let p be an exponent. Then for all f ∈
Xp
A and g ∈ Xp′

A∗ we have

|〈f, g〉| . ||f ||Xp
A
||g||Xp′

A∗
, (6.3)

where 〈·, ·〉 is the inner product on L2(Rn).

Proof. Let ϕ, ψ ∈ Ψ∞∞ be nondegenerate and suppose ε > 0. By Proposition 6.1.6
there exist F ∈ X2∩Xp and G ∈ X2∩Xp′ such that Sϕ,AF = f and Sψ,A∗G = g,
with

||F ||Xp . (1 + ε) ||f ||Xp
A

and ||G||Xp′ . (1 + ε) ||g||Xp′
A∗
.

Since S∗ϕ,A = Qϕ̃,A∗ , and using that the L2(R1+n
+ ) inner product yields a duality

pairing for tent and Z-spaces, we thus have

|〈f, g〉| = |〈F,Qϕ̃,A∗Sψ,A∗G〉L2(R1+n
+ )|

. ||F ||Xp ||Qϕ̃,A∗Sψ,A∗G||Xp′

. ||F ||Xp ||G||Xp′ (6.4)

. (1 + ε)2 ||f ||Xp
A
||g||Xp′

A∗
,

where (6.4) follows from Theorem 5.2.20. Since ε > 0 was arbitrary we obtain
(6.3).

The tent space and Z-space embeddings of Section 5.1 immediately yield
corresponding embeddings of the pre-Hardy–Sobolev and pre-Besov spaces.

Proposition 6.1.9 (Mixed embeddings). Let p and q be exponents with p 6= q
and p ↪→ q. Then we have the continuous embedding

(X0)p
A ↪→ (X1)q

A,

where X0,X1 ∈ {H,B}, and the corresponding embedding holds for positive and
negative versions.

Proof. This follows directly from the definition of the spaces Xp
A and from Theo-

rem 5.1.33. The spectral subspace versions follow by intersecting withR(A)±.

Remark 6.1.10. For p = (p, s) we will sometimes write Xp
A = Xp

s,A, and for
p = (∞, s;α) we may write Xp

A = Xp
s;α,A. This notation is a bit heavy, so

we avoid it whenever possible, except in the case of X2
0,A, which we can simply

abbreviate as X2
A (as is standard).

175



6.1.2 Mapping properties of holomorphic functional cal-
culus

In the same way that we proved independence on auxiliary functions in the previ-
ous section, we can prove various mapping properties (including boundedness) of
the holomorphic functional calculus between pre-Hardy–Sobolev and pre-Besov
spaces.

The first result says heuristically that an operator of homogeneity δ decreases
regularity by δ.

Theorem 6.1.11. Let p be an exponent and δ ∈ R. Suppose η ∈ Ψδ
−δ. Then the

operator η(A) maps D(η(A)) ∩ Xp
A into Xp+δ

A , and the quasinorm estimate

||η(A)f ||Xp+δ
A

. ||η||Ψδ−δ ||f ||Xp
A

holds for all f ∈ D(η(A)) ∩ Xp
A. The same results hold for spectral subspaces.

Proof. Let ϕ, ψ ∈ Ψ∞∞ and let ν ∈ Ψ∞∞ be a Calderón sibling of ψ. Then for all
f ∈ D(η(A)) ∩ Xp

A we have

||η(A)f ||Xp+δ
A
' ||Qϕ,Aη(A)Sν,AQψ,Af ||Xp+δ

. ||η||Ψδ−δ ||Qψf ||Xp (6.5)

' ||η||Ψδ−δ ||f ||Xp
A

where (6.5) follows from Theorem 5.2.20. To incorporate spectral subspaces in
this argument, write f ∈ D(η(A)) ∩ Xp,±

A as f = χ±(A)f and

η(A)f = η(A)χ±(A)f = χ±(A)η(A)f,

and note that this shows that η(A) maps D(η(A)) ∩R(A)± into R(A)±.

Because the spaces Xp
A may be incomplete, we cannot extend the operators

η(A) by boundedness without introducing completions. This is done in Subsection
6.1.3. Of course, when η ∈ H∞ we have D(η(A)) = R(A), and so we obtain
bounded holomorphic functional calculus in the following sense.

Corollary 6.1.12. Let p be an exponent and η ∈ H∞. Then the operator η(A)
is bounded on Xp

A, with

||η(A)f ||Xp
A
. ||η||∞ ||f ||Xp

A

for all f ∈ Xp
A, and likewise for spectral subspaces.
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This allows us to characterise the positive and negative subspaces Xp,±
A as

images of spectral projections.

Corollary 6.1.13. Let p be an exponent. Then we have

Xp,±
A = χ±(A)Xp

A.

Proof. If f ∈ Xp,±
A then by definition we have f = χ±(A)f ∈ χ±(A)Xp

A. Con-
versely, if f ∈ χ±(A)Xp

A, then f is in R(A)±, and by Corollary 6.1.12 we have
f ∈ Xp

A. Therefore f ∈ R(A)± ∩ Xp
A = Xp,±

A .

The power functions Aλ := [z 7→ zλ](A) for λ ∈ R \ {0} (see Section 5.2.1)
are generally unbounded on R(A), but they do map between our adapted spaces
with a shift in regularity (when we intersect with the domain). This is a direct
consequence of Theorem 6.1.11 since [z 7→ zλ] ∈ Ψ−λλ ; the norm equivalence is
obtained by applying Theorem 6.1.11 with both λ and −λ.

Corollary 6.1.14. Let p be an exponent and λ ∈ R \ {0}. Then Aλ maps
D(Aλ) ∩ Xp

A into Xp−λ
A with the quasinorm estimate∣∣∣∣∣∣Aλf ∣∣∣∣∣∣

Xp−λ
A

' ||f ||Xp
A

for all f ∈ D(Aλ) ∩ Xp
A.

Since the operators Aλ are all densely defined in R(A), and since Aλ0Aλ1 =
Aλ0+λ1 whenever this is meaningful, we have almost proven that Aλ is an iso-
morphism from Xp

A to Xp−λ
A . We need to extend everything by boundedness to

make this rigorous. As previously mentioned, this requires the introduction of
completions.

6.1.3 Completions and interpolation

The spaces Xp
A defined in the previous section are called pre-Hardy–Sobolev and

pre-Besov spaces because, with the exception of X2
0,A = R(A), they need not be

complete. One could try to solve this problem by taking arbitrary completions
(Xp

A)c of Xp
A and declaring these to be the Hardy–Sobolev and Besov spaces as-

sociated with A. However, if we take this approach, then for different exponents
pi, there may not exist a natural topological vector space in which the comple-
tions (Xpi

A )c both embed.2 This prevents us from discussing interpolants of these
2Stahlhut takes this approach in his thesis [84, §4.1], but his ambient space - a product space

of abstract completions indexed over all exponents - is not as natural as the one we are about
to propose.
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completions. The impact of this problem on abstract Hardy space theory seems
to have first been discussed by Auscher, McIntosh, and Morris [11]. We avoid
this issue by introducing certain canonical completions within tent and Z-spaces
(and hence within L0(R1+n

+ )). If another completion is possible - for example,
within the space Z ′(Rn) of distributions modulo polynomials, in which the classi-
cal Hardy–Sobolev and Besov spaces are embedded - then we are free to identify
this with our canonical completion.

By a completion of a quasinormed space Q we mean a continuous injective
map ι : Q → Q̃, where Q̃ is a complete quasinormed space and ι(Q) is dense in
Q̃. By a weak-star completion of Q, we mean ι : Q → Q̃ as above, where Q̃ is a
dual space and where ι(Q) is weak-star dense in Q̃. Eventually we will refer to
Q̃ itself as the completion, with the associated inclusion being implicit.

In this section, whenever p is infinite, we will interpret ‘completion’ to mean
‘weak-star completion’.

Definition 6.1.15. For an exponent p and an auxiliary function ψ ∈ Ψ(Xp
A),

define the canonical completion

ψXp
A := Qψ,AXp

A ⊂ Xp

and likewise
ψXp,±

A := Qψ,AXp,±
A ⊂ ψXp

A

where the closures are taken in the Xp quasinorm when p is finite, and in the
weak-star topology on Xp when p is infinite. We equip ψXp

A and ψXp,±
A with

the Xp quasinorm, so that ψXp
A and ψXp,±

A become quasi-Banach spaces.

Proposition 6.1.16. Fix p and ψ as in Definition 6.1.15. Then Qψ,A : Xp
A →

ψXp
A and Qψ,A : Xp,±

A → ψXp,±
A are completions of Xp

A and Xp,±
A .

Proof. By construction the spaces ψXp
s,A and ψXp,±

s,A are complete and contain
Qψ,AXp

A and Qψ,AXp,±
A respectively as dense subspaces (in the weak-star topology

when p is infinite). The map Qψ,A : Xp
A → ψXp

A is continuous since ψ ∈ Ψ(Xp
A),

and injective by Corollary 5.2.22. These properties automatically continue to
hold for the restrictions of Qψ,A to the spectral subspaces Xp,±

A .

Of course, completions are always unique, and so any completion may be iden-
tified with any canonical completion. It will be useful to make this identification
precise.
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Proposition 6.1.17 (Identification of completions). Fix p and ψ as in Definition
6.1.15 and suppose that ι : Xp

A → X is a completion of Xp
A. Then the unique map

Qι
ψ,A : X→ Xp such that the triangle

X
Qι
ψ,A

!!
Xp
A

ι

OO

Qψ,A
// Xp

commutes, is an isomorphism between X and ψXp
A. Its inverse is given by the

map Sιψ,A : Xp → X, which is the unique continuous extension of the map ι ◦
Sν,A : X2 ∩Xp → X (using the weak-star topology on Xp when p is infinite) for
any ν ∈ Ψ∞∞ which is a Calderón sibling of ψ. The same results hold if we replace
all spaces with corresponding positive and negative subspaces.

Proof. Since Qψ,A : Xp
A → ψXp

A is a completion of Xp
A, by the universal property

of completions there exists a unique map Q̃ι
ψ,A : X→ ψXp

A such that the triangle

X
Q̃ι
ψ,A

""
Xp
A

ι

OO

Qψ,A
// ψXp

A

commutes. Hence we have a commutative diagram

X
Q̃ι
ψ,A

""

Qι
ψ,A

&&
Xp
A

ι

OO

Qψ,A
// ψXp

A id
// Xp.

Since
(id ◦Q̃ι

ψ,A) ◦ ι = Qψ,A = Qι
ψ,A ◦ ι,

by uniqueness we must have Qι
ψ,A = id ◦ Q̃ι

ψ,A = Q̃ι
ψ,A. Therefore it suffices to

show that Q̃ι
ψ,A satisfies the desired properties.

To show that Sιψ,AQ̃ι
ψ,A = idX, observe that we have a commutative diagram

X
Q̃ι
ψ,A // ψXp

A
� � // Xp

Sιψ,A //X
Q̃ι
ψ,A // ψXp

A

Xp
A

ι

OO

Qψ,A//

id

66ψ(Xp
A)
?�

OO

� � //

id

66
X2 ∩Xp

?�

OO

Sν,A // Xp
A

ι

OO

Qψ,A// ψ(Xp
A).
?�

OO
(6.6)
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Thus we have
Sιψ,AQ̃ι

ψ,Aι = ι ◦ id = ι

and
Q̃ι
ψ,ASιψ,A|ψ(Xp

A) = id,

so by uniqueness of extensions we must have that Q̃ι
ψ,A and Sιψ,A are mutual

inverses.
The corresponding proofs for positive and negative spectral subspaces are

identical.

As a corollary of this argument we can show that ψXp
A is a retract of Xp.

This will be crucial in identifying interpolants.

Corollary 6.1.18. Fix p, ψ, and ν as in Proposition 6.1.17, and let ι : Xp
A → X

be a completion of Xp
A. Then the map Qι

ψ,ASιψ,A : Xp → ψXp
A is the extension of

the projection Qψ,ASν,A : X2 ∩Xp → Qψ,AXp
A in the appropriate topology (hence

independent of ι), and it is a projection onto ψXp
A. The same statements hold

for spectral subspaces.

Therefore we can write Qψ,ASν,A := Qι
ψ,ASιψ,A to denote this extension.

Now that we have thought hard enough about completions, we can extend
the duality and boundedness results of the previous sections.

Proposition 6.1.19 (Duality). Let p be a finite exponent, and let ψ, ν ∈ Ψ∞∞
be Calderón siblings. Then the X2 inner product identifies ν̃Xp′

A∗ as the Banach
space dual of ψXp

A, and also identifies ν̃Xp′,±
A∗ as the Banach space dual of ψXp,±

A .

Proof. If f ∈ ψXp
A and g ∈ ν̃Xp′

A∗ , then we immediately have

|〈f, g〉X2| ≤ ||f ||Xp ||g||Xp′ = ||f ||ψXp
A
||g||

ν̃Xp′
A∗
,

so every g ∈ ν̃Xp′
A∗ induces a bounded linear functional on Xp

A.
Conversely, suppose ϕ ∈ (ψXp

A)′. Then we can define a bounded linear func-
tional Φ ∈ (Xp)′ by

Φ(F ) := ϕ(Qψ,ASν,AF )

for all F ∈ Xp. By X-space duality, there exists a function GΦ ∈ Xp′ such that

〈F,GΦ〉X2 = Φ(F )

for all F ∈ Xp, which satisfies

||GΦ||Xp′ ' ||Φ||(Xp)′ . ||ϕ||(ψXp
A)′ .
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Hence for all f ∈ ψXp
A we have

〈f, (Qψ,ASν,A)∗GΦ〉X2 = 〈f,GΦ〉X2 = Φ(f) = ϕ(f)

since f = Qψ,ASν,Af . Since Qψ,ASν,A is the continuous extension of Qψ,ASν,A
from X2 ∩ Xp to Xp, and since (Qψ,ASν,A)∗ = Qν̃,A∗Sψ̃,A∗ on X2, we find that
(Qψ,ASν,A)∗ = Qν̃,A∗Sψ̃,A∗ . Therefore we have

ϕ(f) = 〈f,Gϕ〉X2

for all f ∈ ψXp
A, where Gϕ = Qν̃,A∗Sψ̃,A∗GΦ ∈ ν̃Xp′

A∗ . Furthermore we have

||Gϕ||ν̃Xp′
A∗

=
∣∣∣∣∣∣Qν̃,A∗Sψ̃,A∗GΦ

∣∣∣∣∣∣
Xp′

. ||ϕ||(ψXp
A)′ .

As with every other result in this section, the same proof works for spectral
subspaces.

Proposition 6.1.20 (Boundedness of functional calculus). Let p be an exponent,
δ ∈ R, and η ∈ Ψδ

−δ. Suppose ι1 : Xp
A → X and ι2 : Xp+δ

A → Y are completions.
Then η(A) extends to a bounded operator η̃(A) : X → Y, in the sense that the
diagram

D(η(A)) ∩ Xp
A

ι1
��

η(A) // Xp+δ
A

ι2
��

X
η̃(A)

//Y

commutes, and that ∣∣∣∣∣∣∣∣η̃(A)f
∣∣∣∣∣∣∣∣

Y
. ||η||Ψδ−δ ||f ||X . (6.7)

for all f ∈ X. Similar results hold for spectral subspaces.

Proof. Since D(η(A)) is dense in X2
A = R(A) and since X2

A ∩ Xp
A is dense in

Xp
A (Corollary 6.1.7 for finite exponents, duality for infinite exponents using the

weak-star topology), we have that D(η(A))∩Xp
A is dense in Xp

A. The result then
follows from Theorem 6.1.11 and the universal property of completions.

Remark 6.1.21. Evidently ‘completed’ versions of Corollaries 6.1.12, 6.1.13, and
6.1.14 can be formulated.
Remark 6.1.22. In the situation of Proposition 6.1.20 we will use the symbol η(A)
to denote both the original operator D(η(A)) ∩ Xp

A → Xp+δ
A and its extension to

completions X → Y. This will not cause any ambiguity, but one should be
careful.
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Finally we can state the interpolation theorem for canonical completions of
pre-Hardy–Sobolev and pre-Besov spaces. Having established so much abstract
theory, this is now a simple consequence of the interpolation results for tent spaces
and Z-spaces.

Theorem 6.1.23 (Interpolation of completions). Fix 0 < θ < 1 and ψ ∈ Ψ∞∞.
Let p and q be exponents.

(i) Suppose j(p), j(q) ≥ 0, with equality for at most one exponent. Then we
have the identification

[ψHp
A, ψHq

A]θ = ψH[p,q]θ
A .

(ii) Suppose i(p), i(q) ≥ 1, with p and q not both infinite. Then we have the
identification

[ψBp
A, ψBq

A]θ = ψB[p,q]θ
A .

(iii) Suppose θ(p) 6= θ(q). Then we have the identification

(ψXp
A, ψXq

A)θ,pθ = ψB[p,q]θ
A

where pθ = i([p,q]θ).

Proof. Fix a Calderón sibling ν ∈ Ψ∞∞ of ψ. By Corollary 6.1.18 the map Qψ,ASν,A
extends to a map Qψ,ASν,A : Xp + Xq → ψXp

A + ψXq
A which restricts to projec-

tions Xp → ψXp
A and Xq → ψXq

A. Therefore by the retraction/coretraction
interpolation theorem (see [89, §1.2.4]),3, for all interpolation functors F we have

F(Xp
A,X

q
A) = Qψ,ASν,AF(Xp, Xq).

The results then follow from Corollary 6.1.18 and the interpolation theorems
5.1.12, 5.1.30, and 5.1.31.

6.1.4 The Cauchy operator on general adapted spaces

Recall the function sgp = [z 7→ e−[z]]. This function is in Ψ∞0 ⊂ H∞, and therefore
for all t > 0 the operator e−t[A] is defined and bounded on R(A). By Corollary
6.1.12, for all exponents p we have that e−t[A] is bounded on Xp

A. Furthermore,
3This is only stated for Banach spaces in the given reference. The only property specific to

Banach spaces which is needed is the validity of the closed graph theorem, which also holds for
quasi-Banach spaces [56, §2], so the proof goes through even for quasi-Banach spaces.
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when restricted to the positive or negative spectral subspace, the operator Qsgp,A

coincides with the Cauchy operator C±A , which produces solutions to the Cauchy
problem associated with A on R+ or R− respectively.

Given a completion X of Xp
A, each of the operators e−t[A] : Xp

A → Xp
A and the

spectral projections χ±(A) extend to maps X → X (in the sense of Proposition
6.1.20), and by means of these maps we can extend the Cauchy operators C±A to
maps

C±A : X→ L∞(R± : X±).

Note that we construct these operators by extending each operator e−t[A]χ±(A) by
boundedness, rather than by extending the Cauchy operators directly. Similarly
we can define

Qsgp,A : X→ L∞(R+ : X).

Proposition 6.1.24 (Properties of Cauchy extensions). Let p be an exponent,
and fix a completion X of Xp

A.4 Then for all f ∈ X the extension Qsgp,Af is in
C∞(R+ : X), and if f ∈ χ±(A)X, then the Cauchy extension C±Af solves the
Cauchy equation

∂tC±Af ± AC±Af = 0

strongly in C∞(R± : X). Furthermore for all f ∈ X we also the limits

lim
t→0

Qsgp,Af(t) = f and lim
t→∞

Qsgp,Af(t) = 0. (6.8)

Proof. First we will prove the limit results. These reduce to the case of finite
exponents p, as for infinite p we can deduce the limits (6.8) by testing against
Xp′
A∗ . Furthermore, by density, it suffices to prove the limits

lim
t→0

e−t[A]f = f and lim
t→∞

e−t[A]f = 0

for f ∈ Xp
A.

For f ∈ Hp
A, these follow from arguments almost identical to those of [16,

Propositions 4.5 and 4.6], the only difference being the presence of the weight
κ−θ(p), which does not change the argument. Now fix an exponent q 6= p such
that q ↪→ p, so that Hq

A ↪→ Bp
A (Proposition 6.1.9). For f ∈ Hq

A, we then have

lim
t→0

∣∣∣∣∣∣e−t[A]f − f
∣∣∣∣∣∣
Bp
A

. lim
t→0

∣∣∣∣∣∣e−t[A]f − f
∣∣∣∣∣∣
Hq
A

= 0

4Recall that we mean a weak-star completion when p is infinite, and in this case we use the
weak-star topology on X.
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and
lim
t→∞

∣∣∣∣∣∣e−t[A]f
∣∣∣∣∣∣
Bp
A

. lim
t→∞

∣∣∣∣∣∣e−t[A]f
∣∣∣∣∣∣
Hq
A

= 0.

Since Hq
A is dense in Bp

A (Corollary 6.1.7), these limits hold for all f ∈ Bp
A.

Now we will prove the smoothness result. It suffices to work with f ∈ χ+(A)X
here, as the result for χ−(A)X uses the same argument, and the general result
follows from the decomposition X = χ+(A)X⊕ χ−(A)X. First observe that the
function Φ: R+ → H∞ defined by Φ(t) = [z 7→ e−t[z]] is smooth with Fréchet
derivative DtΦ: R → H∞ given by DtΦ(τ) = [z 7→ −τ [z]e−t[z]]. Next, note that
the map ΩA : H∞ → L(χ+(A)X) with ΩA(f) = f(A) is linear and bounded in
the strong topology (Proposition 6.1.20). By the chain rule, the composition of
these maps is smooth, with Fréchet derivative

Dt(ΩA ◦ Φ)(τ) = ΩA ◦DtΦ(τ) = −τAe−tA.

We can then write

∂tC+
Af(t) = Dt(ΩA ◦ Φ)(1)f = −Ae−tAf = −AC+

Af(t),

which completes the proof.

Now we must address the question of whether or not CA maps Xp
A into Xp.

This would imply that one can construct C∞(R± : Xp
A) solutions5 to (CR)A which

are in Xp with given initial data in Xp,±
A . It turns out that this is only reasonable

when θ(p) < 0. For i(p) ≤ 2 we already know everything we need to prove this;
for i(p) > 2 we need more information (see Subsection 6.2.2).

Theorem 6.1.25 (Cauchy characterisation of adapted spaces, i(p) ≤ 2). Let p
be an exponent with i(p) ≤ 2 and θ(p) < 0. Then for all f ∈ R(A),

||f ||Xp
A
' ||Qsgp,Af ||Xp .

Proof. By Proposition 6.1.3, we have

sgp ∈ Ψ∞0 ⊂ Ψ(−θ(p)+n| 12−j(p)|)+
θ(p)+ ∩H∞ ⊂ Ψ(Xp

A),

which yields the result.
5This solution concept does not always agree with the L2

loc solution concept that we are
really interested in. This is discussed further in Subsection 7.3.1.
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Remark 6.1.26. The estimate

||f ||Xp
A
. ||Qsgp,Af ||Xp

holds for all p, as can be shown by a Calderón reproducing argument as in the
proof of Proposition 6.1.3. The reverse estimate need not hold in general.

We will need the following technical lemmas in Section 7.3.

Lemma 6.1.27. For every M > 0, there exist functions ϕ+, ϕ− ∈ H∞ such
that (ϕ±s (A))s>0 satisfies off-diagonal estimates of order M , ϕ±s (A) = e−s[A] on
the corresponding spectral subspace X2,±

A , and lims→0 ϕ
±
s (A) = I in the L2-strong

operator topology.

For a proof, see [15, Lemma 15.1], noting that H2,±
A = B2,±

A . Although this
result is stated for A ∈ {DB,BD} there, the proof only uses the standard as-
sumptions.

Corollary 6.1.28. Let p ∈ (0,∞]. Suppose f ∈ X±A ∩ Ep. Then C±Af(t) ∈ Ep

for each t ∈ R±, and if p <∞ then limt→0C
±
Af(t) = f in Ep.

Proof. Choose functions ϕ± as in Lemma 6.1.27, such that (ϕ±s (A))s>0 satisfies
off-diagonal estimates of large order. By Proposition 5.2.9, the operators ϕ±t (A)
are bounded on Ep. Since ϕ±t (A) = e−t[A] on X2,±

A , we have C±Af(t) = e−t[A]f ∈ Ep

for all t ∈ R±. The limit statement follows from Lemma 6.1.27 (which gives strong
convergence in L2) and Proposition 5.2.10 (which improves this to Ep).

6.2 Spaces adapted to perturbed Dirac opera-
tors

We now begin to work with Cm(1+n)-valued functions for some fixed m ∈ N.
When applying results of the previous sections, we implicitly take N = m(1 +n).

In this section, we fix the Dirac operator D and consider multipliers B as in
Subsection 4.1.2 of the introduction. Recall that the perturbed Dirac operators
DB and BD then satisfy the Standard Assumptions (Theorem 5.2.12). Further-
more, R(DB) = R(D), and the restrictions DB|R(DB) and BDR(BD) are similar
under conjugation by B|R(DB) [17, Proposition 2.1]. Consequently, whenever
f ∈ D(D) ∩R(BD) and ϕ ∈ H∞ we have

Dϕ(BD)f = ϕ(DB)Df.

We will refer to this principle as similarity of functional calculi and use it repeat-
edly.
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6.2.1 Identification of spaces adapted to D, DB, and BD

The operators DB and BD satisfy the Standard Assumptions, so we can define
pre-Besov–Hardy–Sobolev spaces Xp

DB. The case B = I yields Xp
D.

For a certain range of exponents p that we denote by Imax, the spaces Xp
D

may be identified as projections of classical smoothness spaces (to be shown
in Proposition 6.2.1). Recall that we use the notation Xp to denote classical
smoothness spaces, as in Subsection 5.1.5. These spaces are all contained in
Z ′(Rn), the space of tempered distributions modulo polynomials.

In [16, Theorem 4.16] it is shown that for p ∈ (n/(n + 1),∞) we have an
identification

H(p,0)
D ' PD(H(p,0) ∩ L2) ⊂ Z ′(Rn)

where PD is the bounded projection from L2(Rn) onto R(D). Since PD extends
boundedly to the spaces H(p,0) by virtue of being a Fourier multiplier within
the scope of the Mikhlin multiplier theorem (see [90, Theorem 5.2.2] and [53,
Proposition 4.4]), we may write

H(p,0)
D = PD(H(p,0)) = H(p,0) ∩DZ ′ ⊂ Z ′(Rn),

thus providing a completion of H(p,0)
D within the space of distributions modulo

polynomials. Hence if we have an identification H(p,0)
DB ' H(p,0)

D , we can find a
completion of H(p,0)

DB in Z ′.
Furthermore, combining [16, Lemma 11.6] with Corollary 6.1.14 shows that

for all p ∈ (1,∞) we have

H(p,−1)
D ' PD(H(p,−1) ∩ L2) ∩DZ ′ ⊂ Z ′(Rn),

and for all α ∈ [0, 1) we have

H(∞,0;α)
D ' PD(H(∞,0;α) ∩ L2) ⊂ Z ′(Rn),

so by the same argument we may write

H(p,−1)
D ' PD(H(p,−1)) = H(p,−1) ∩DZ ′ ⊂ Z ′(Rn)

and
H(∞,0;α)
D ' PD(H(∞,0;α)) = H(∞,0;α) ∩DZ ′ ⊂ Z ′(Rn)

(where PD is extended by duality).
We can interpolate between these observations to yield an identification of the

spaces Hp
D in a restricted (but for our applications, sufficiently large) range of p.
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Figure 6.1: The region Imax on which Hp
D ' Hp ∩DZ ′.
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Theorem 6.2.1 (Identification of D-adapted spaces). Suppose p is in the region
Imax pictured in Figure 6.1. Then

Hp
D ' PD(Hp ∩ L2).

Furthermore, if p is in the interior of Imax, then

Bp
D ' PD(Bp ∩ L2).

We abuse notation by writing Xp
D = PD(Xp).

To prove this we will need the following lemma.

Lemma 6.2.2. Suppose that f ∈ R(D) (note that we do not take the closure of
the range here). Then there exists g ∈ D(D) ∩R(D) such that f = Dg and

||f ||Xp ' ||g||Xp+1 .

for all exponents p.

Proof. Since f ∈ R(D) there exists g̃ ∈ D such that f = Dg̃. Let g = PDg̃. Since
the projection PD is along N (D), we have f = Dg also. The estimate

||f ||Xp . ||g||Xp+1
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then follows since D is a first-order homogeneous differential operator. To obtain
the reverse estimate, we need to invert D on R(D). Let

T = D∆−1PD + (−∆)−1/2(I − PD).

One can show that T is a homogeneous Fourier multiplier of order −1, and hence
maps Xp to Xp+1. Furthermore, TPD inverts D on R(D), and so we have the
estimate

||g||Xp+1 . ||f ||Xp

which completes the proof.

Proof of Theorem 6.2.1. When p is finite, this follows directly from the identifi-
cation of complex and real interpolants of the spaces Hp (Theorem 5.1.52).

Now suppose p is infinite. Observe that the subregion of Imax consisting
of infinite exponents (the lightest shaded region, including the dashed line) is
precisely the ♥-dual region of the darkest shaded region, including the solid line.
Therefore for all infinite p ∈ Imax, p♥ is finite and in Imax. If f = Dg for some
g ∈ D(D) ∩R(D) as in Lemma 6.2.2, then we have

||f ||Xp
D
' ||g||Xp+1

D
(6.9)

' sup
h∈Xp♥

D

|〈g, h〉|

' sup
h∈Xp♥∩L2

|〈g,PDh〉|

= sup
h∈Xp♥∩L2

|〈PDg, h〉| (6.10)

' ||g||Xp+1 (6.11)
' ||f ||Xp . (6.12)

with all suprema taken over appropriately normalised elements. Line (6.9) follows
from Corollary 6.1.14. In (6.10) we use orthogonality of the decomposition L2 =
N (D)⊕R(D). In line (6.11) we remove the projection by using that g ∈ R(D).
In (6.12) we use the conclusion of Lemma 6.2.2, which follows from our choice
of g. Therefore by weak-star density, we get Xp

D ' PD(Xp ∩ L2) (the projection
comes from the fact that f ∈ R(D) in this estimate).

Now we shall discuss spaces adapted to DB, and the range of exponents for
which they may be identified with spaces adapted to D. As shown in the intro-
duction, the following ‘identification region’ plays a central role in the theorems
of Chapter 7.
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Definition 6.2.3. We define

I(X, DB) :=
{
p ∈ Imax ∩ Efin : ||f ||Xp

DB
' ||f ||Xp

D
for all f ∈ R(DB) = R(D)

}
.

(6.13)
and for s ∈ R,

Is(X, DB) := {i(p) : p ∈ I(X, DB) : θ(p) = s} ⊂ (0,∞).

Note that I(X, DB) is defined to be a set of finite exponents. We could
include infinite exponents in this definition, but it is technically more convenient
to restrict ourselves to finite exponents.6 It is also defined to be contained in
Imax, so not only do we have Xp

DB = Xp
D, but we also have the identification of

Xp
D as the projection of a classical space.
We recall a key result of Auscher and Stahlhut, which follows from [16, The-

orem 5.1 and Remark 5.2].

Theorem 6.2.4 (Auscher–Stahlhut). There exists ε = ε(B) > 0 such that
(2n/(n + 2) − ε, 2 + ε) ⊂ I0(H, DB). Furthermore, if n = 1, then I0(H, DB) =
(1/2,∞).

We will extend this result to allow for more general exponents of order θ(p) ∈
[−1, 0], and also to incorporate Besov spaces.

The ♥-duality operation on exponents provides a link between I(X, DB) and
I(X, DB∗) (Proposition 6.2.7). We need some preliminary results to establish
this link. First we state a local coercivity property of B, which is proven in [16,
Lemma 5.14].

Lemma 6.2.5. For any u ∈ L2
loc with Du ∈ L2

loc and any ball B(x, t) ∈ Rn, we
have ˆ

B(x,t)
|Du|2 .B,n,N

ˆ
B(x,2t)

|BDu|2 + t−2
ˆ
B(x,2t)

|u|2.

Proposition 6.2.6 (Intertwining and regularity shift). Let p be an exponent,
and suppose f ∈ Xp

BD ∩ D(D). Then Df ∈ Xp−1
DB and

||Df ||Xp−1
DB
' ||f ||Xp

BD
.

6More precisely: in applications, whenever we deal with infinite exponents, we always con-
sider the space in question as the dual space, and the predual exponent will be in I(X, DB∗)
(see for example Theorem 7.3.2).
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Proof. We will only prove the result for Tp with p = (p, s) finite; all other cases
are proven by the same argument.

Let ψ ∈ Ψ∞∞ be nondegenerate and define ψ̃ ∈ Ψ∞∞ by ψ̃(z) = zψ̃. Then ψ̃(DB)
maps R(DB) into D((DB)−1). Since f ∈ D(D) we have Df ∈ R(D) = R(DB).
Using similarity of functional calculi, write

||Df ||Hp−1
DB
' ||t 7→ ψ(tDB)Df ||T ps−1

= ||t 7→ Dψ(tBD)f ||T ps−1

=
∣∣∣∣∣∣t 7→ D(BD)−1ψ̃(tBD)f

∣∣∣∣∣∣
T ps
.

For all t > 0 we have

(BD)−1ψ̃(tBD)f ∈ L2, D(BD)−1ψ̃(tBD)f = ψ(tDB)Df ∈ L2,

so we can apply Lemma 6.2.5 for each t > 0 with u = (BD)−1ψ̃(tBD)f as follows:
for all x ∈ Rn,

A(t 7→ t−sD(BD)−1ψ̃(tBD)f)(x)

=
(ˆ ∞

0
t−2s
ˆ
B(x,t)

|(D(BD)−1ψ̃(tBD)f)(y)|2 dy dt

tn+1

)1/2

.

(ˆ ∞
0

t−2s
[ˆ

B(x,2t)
|(ψ̃(tBD)f)(y)|2 dy

+
ˆ
B(x,2t)

|(ψ(tBD)f)(y)|2 dy
]

dt

tn+1

)1/2

. A(κ−sQψ̃,BDf)(x) +A(κ−sQψ,BDf)(x).

Therefore

||Df ||Hp−1
DB

.
∣∣∣∣∣∣Qψ̃,BDf

∣∣∣∣∣∣
Tp

+ ||Qψ,BDf ||Tp ' ||f ||Hp
BD
.

To prove the reverse estimate, using that f ∈ D(D) = D(BD), write

||f ||Hp
BD

=
∣∣∣∣∣∣(BD)−1BDf

∣∣∣∣∣∣
Hp
BD

. ||BDf ||Hp−1
BD

' ||t 7→ ψ(tBD)BDf ||Tp−1

= ||t 7→ Bψ(tDB)Df ||Tp−1

. ||Qψ,DBDf ||Tp−1

' ||Df ||Hp−1
DB
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using (6.1.14), boundedness of the multiplier B, and similarity of functional cal-
culi.

Proposition 6.2.7 (♥-duality of identification regions). If p ∈ I(X, DB), then
||f ||

Xp♥
DB∗
' ||f ||

Xp♥
D

for all f ∈ R(D). In particular, if p♥ is also finite, then
p♥ ∈ I(X, DB∗).

Proof. Suppose g ∈ D(D)∩Xp′
B∗D. Then arguing similarly to the proof of Theorem

6.2.1,

||Dg||
Xp♥
DB∗
' sup

h∈D(D)∩X(p♥)′
B∗D

|〈Dg, h〉|

= sup
h∈D(D)∩Xp+1

B∗D

|〈g,Dh〉|

' sup
h∈Xp

DB∗

|〈g, h〉| (6.14)

' sup
h∈Xp

D

|〈g, h〉| (6.15)

' ||g||Xp′
D

' ||Dg||
Xp♥
D

(6.16)

with all suprema taken over appropriately normalised elements. The equivalence
(6.14) uses Proposition 6.2.6, and then (6.15) uses the assumption on p. The
final equivalence (6.16) uses Corollary 6.1.14. Since D(D(D) ∩ Xp′

B∗D) is dense7

in Xp♥
DB∗ (by density of R(D) in X2

D and Corollary 6.1.7), we are done.

The following result then follows immediately from Theorem 6.2.4.

Corollary 6.2.8. There exists ε > 0 such that

I−1(H, DB) ⊃


(1,∞) (n = 1)
(2− ε,∞) (n = 2)
(2− ε, 2n/(n− 2) + ε) (n ≥ 3)

The main application of our discussion of interpolations and completions of
adapted spaces, particularly Theorem 6.1.23, is in showing that I(X, DB) is
closed under interpolation, and also that information on I(H, DB) implies infor-
mation on I(B, DB).

Proposition 6.2.9 (Convexity of identification regions). Let θ ∈ [0, 1].
7Weak-star dense when p′ is infinite.
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(i) If p,q ∈ I(H, DB), then [p,q]θ is in I(H, DB). Furthermore, if θ(p) 6=
θ(q), then [p,q]θ is in I(B, DB).

(ii) If p,q ∈ I(B, DB), then [p,q]θ ∈ I(B, DB).

Proof. We will only prove the first part, as the proof of the other parts are
identical but with real interpolation replacing complex interpolation.

Suppose p,q ∈ I(H, DB). Let ψ, ϕ ∈ Ψ∞∞ be Calderón siblings. First note
that we have a map

Qψ,DBXp
DB + Qψ,DBXq

DB

Sϕ,DB−→ Xp
DB + Xq

DB

id
↪→ Xp

D + Xq
D

(here we use Theorem 6.2.1), which restricts appropriately and which extends by
boundedness to

Sϕ,DB : ψXp
DB + ψXq

DB → Xp
D + Xq

D.

By Proposition 6.1.17, the restrictions of Sϕ,DB to ψXp
DB and ψXq

DB are isomor-
phisms, and their inverses both extend Qψ,DB : X(2,0)

DB → Qψ,DBX(2,0)
DB . Therefore,

by complex interpolation (Theorem 6.1.23) we have an isomorphism

Sϕ,DB : ψX[p,q]θ
DB → X[p,q]θ

D

which extends Sϕ,DB : Qψ,DBX(2,0)
DB → X(2,0)

DB = X(2,0)
D . Hence for all f ∈ R(DB) =

X(2,0)
DB we have

||f ||X[p,q]θ
DB

' ||Qψ,DBf ||X[p,q]θ

' ||Sϕ,DBQψ,DBf ||X[p,q]θ
D

= ||Sϕ,DBQψ,DBf ||X[p,q]θ
D

= ||f ||X[p,q]θ
D

,

and therefore [p,q]θ ∈ I(H, DB).

Therefore for every B we have a region Imin such that Imin ⊂ I(H, DB) and
Iomin ⊂ I(B, DB), pictured in Figure 6.2, where lower bounds on I0(H, DB) and
I−1(H, DB) can be found in Theorem 6.2.4 and Corollary 6.2.8.

Remark 6.2.10. If p ∈ I(X, DB), then we identify the projected classical Besov–
Hardy–Sobolev space PD(Xp) = Xp∩DZ ′ as a completion of Xp

DB via the exten-
sion of the identity map Xp

DB → Xp
D. If p is infinite and p♥ ∈ I(X, DB∗), then

by Proposition 6.2.7 we may identify PD(Xp) as a weak-star completion of Xp
DB.

We abuse notation by writing Xp
DB for these completions.
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Figure 6.2: The region Imin ⊂ I(H, DB).
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Having made these identifications, note that we do not have equality of Xp,+
DB

and Xp,+
D . The first of these spaces is defined via the spectral projection χ+(DB),

while the second is defined via χ+(D). However, we do of course have Xp,+
DB ⊂ Xp

D.
This will be important in applications to boundary value problems.

Remark 6.2.11. For a coefficient matrix A as in the introduction, if B = Â, then
Â∗ = B̃ := NB∗N , where

N :=
I 0

0 −I

 .
Since DN = −ND and N acts on R(D), the operators DB∗ and −DB̃ are
similar on R(D) = R(DB∗) = R(DB̃). Thus all functional calculus properties
ofDB∗ can be transferred toDB̃, and vice versa. This gives natural isomorphisms
between Xp

DB∗ and Xp
DB̃

, and in particular we have I(X, DB∗) = I(X, DB̃). For
further details see [16, §12.2].

6.2.2 The Cauchy operator on DB-adapted spaces

This section is devoted to the proof of the following theorem. Recall that the
region Imax is introduced in Theorem 6.2.1.
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Theorem 6.2.12 (Cauchy characterisation of adapted spaces, i(p) > 2). Let
p be such that i(p) > 2, θ(p) ∈ (−1, 0) and p♥ ∈ I(X, DB∗). Then for all
f ∈ R(DB), ∣∣∣∣∣∣C+

DBf
∣∣∣∣∣∣
Xp

. ||f ||Xp
D
.

Remark 6.2.13. The condition p♥ ∈ I(X, DB∗) is equivalent to p ∈ I(X, DB)
when p is finite (Proposition 6.2.7).

Remark 6.2.14. The reverse estimate

||f ||Xp
A
.
∣∣∣∣∣∣C+

Af
∣∣∣∣∣∣
Xp

holds for general operators A (satisfying the standard assumptions) and for all
p (see Remark 6.1.26). However, we do not know whether Theorem 6.2.12 holds
with DB replaced by A and without the assumption on p♥.

In contrast with Theorem 6.1.25, the proof of this theorem is quite long. We
thank Pascal Auscher for suggesting this argument.

Before proving the theorem, we establish a technical lemma.

Lemma 6.2.15. Suppose θ ∈ (−1, 0), g ∈ D(D), and f = Dg. Then for all
ξ ∈ Rn, τ > 0, and M ∈ N, we have

¨
T (B(ξ,τ))

|t−θ(I + itDB)−2f(x)|2 dx dt
t

.M

ˆ
B(ξ,4τ)

ˆ
B(ξ,4τ)

+
∞∑
j=2

2−2j(M−n2−(1+θ))
ˆ
A(ξ,2j−1τ,2j+2τ)

G(x, y) dx dy

where
G(x, y) := |g(x)− g(y)|2

|x− y|n+2(1+θ) .

Proof. Fix χ1, χ ∈ C∞c (Rn) such that

suppχ1 ⊂ B(ξ, 4τ), χ1|B(ξ,2τ) ≡ const,
suppχ ⊂ A(ξ, τ/2, 4τ) χ|A(ξ,τ,2τ) ≡ const

For all j ≥ 2 define χj(x) := χ(2−jx), so that suppχj ⊂ A(ξ, 2j−1τ, 2j+2τ) and
χj|A(ξ,2jτ,2j+1τ) ≡ 1. We can choose the functions χ1 and χ such that ∑∞j=1 χj ≡ 1.
Let

c :=
ˆ
B(ξ,τ/2)

g.
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Then we have

f = D(g − c) =
∞∑
j=1

D(g − c)χj.

First we will prove that

¨
T (B(ξ,τ))

|t−θ(I + itDB)−2D(g − c)χ1(x)|2 dx dt
t

.
ˆ
B(ξ,4τ)

ˆ
B(ξ,4τ)

G(x, y) dx dy. (6.17)

Since Ψ2
0 ∈ Ψ−θθ+ ∩H∞ ⊂ Ψ(X(2,θ)

DB ) and since (2, θ) ∈ I(H, DB), we have

¨
T (B(ξ,τ))

|t−θ(I + itDB)−2D(g − c)χ1(x)|2 dx dt
t

≤
¨

R1+n
+

|t−θ(I + itDB)−2D(g − c)χ1(x)|2 dx dt
t

' ||D(g − c)χ1||2H(2,θ)
DB

' ||(g − c)χ1||2Ḣ2
θ+1

'
ˆ
Rn
|D2

θ+1(g − c)χ1(x)|2 dx

using Lemma 5.1.49 (which is valid since 2 > 2n/(n+ 1 + θ)) in the last line.

We claim that

ˆ
Rn

ˆ
Rn

|(g − c)χ1(z)− (g − c)χ1(y)|2
|z − y|n+2(θ+1) dz dy .

¨
B(ξ,4τ)2

|g(z)− g(y)|2
|z − y|n+2(θ+1) dz dy,

(6.18)
from which estimate (6.17) will follow. First observe that if y ∈ B(ξ, τ) and
z ∈ B(ξ, τ/2), then χ1(z) = χ1(y) = 1 and the estimate (6.18) (restricted to such
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y and z) follows immediately. Next, we can estimate
ˆ
B(ξ,τ)c

ˆ
B(ξ,τ/2)

|(g − c)χ1(z)− (g − c)χ1(x)|2
|z − x|n+2(θ+1) dz dx

.
ˆ
A(ξ,τ,4τ)

ˆ
B(ξ,τ/2)

|(g − c)(z)(1− χ1(x))|2
|z − x|n+2(θ+1) dz dx+ A

.χ

ˆ
A(ξ,τ,4τ)

ˆ
B(ξ,τ/2)

|z − x|−n−2(θ+1)
(̂

B(ξ,τ/2)
|g(z)− g(y)| dy

)2

dz dx+ A

. rn
ˆ
B(ξ,τ/2)

|z − y|−n−2(θ+1)
(̂

B(ξ,τ/2)
|g(z)− g(y)| dy

)2

dz + A

. rn
ˆ
B(ξ,τ/2)

ˆ
B(ξ,τ/2)

|g(z)− g(y)|2
|z − y|n+2(θ+1) dz dy + A

.
¨
B(ξ,4τ)2

|g(z)− g(y)|2
|z − y|n+2(θ+1) dz dy,

where

A .
¨
B(ξ,4τ)2

|g(z)− g(y)|2
|z − y|n+2(θ+1) dz dy,

and where we used |z − x| & |z − y| on the region of integration.
Finally, we estimate
ˆ
Rn

ˆ
B(ξ,τ/2)c

|(g − c)χ1(z)− (g − c)χ1(x)|2
|z − x|n+2(θ+1) dz dx

.
ˆ
B(ξ,4τ)

ˆ
A(ξ,τ/2,4τ)

|(g − c)(x)(χ1 − 1)(z)− (g − c)(x)(χ1 − 1)(x)|2
|z − x|n+2(θ+1) dz dx+ A

.∇ξ

ˆ
B(ξ,4τ)

ˆ
A(ξ,τ/2,4τ)

|z − x|−n−2θ
(̂

B(ξ,τ/2)
|g(x)− g(y)| dy

)2

dz dx+ A

.
ˆ
B(ξ,4τ)

r−2θ
(̂

B(ξ,τ/2)
|g(x)− g(y)| dy

)2

dx+ A

.
¨
B(ξ,4τ)2

|g(x)− g(y)|2
|x− y|n+2(θ+1) dx dy

with A as before, using r & |x− y| and |x− y|n+2θ & |x− y|n+2(θ+1) on the region
of integration.

Now we will handle the remaining χj terms. For j ≥ 2, by local coercivity
(Lemma 6.2.5), the equality

BD(I + itBD)−1 = (I − (I + itBD)−1)/it,
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and off-diagonal estimates of the families (I+ itBD)−1 and (I+ itBD)−2 of order
M , we can estimate¨

T (B(ξ,τ))
|t−θ(I + itDB)−2D(g − c)χj(x)|2 dx dt

t

.
ˆ τ

0
t−2θ
ˆ
B(ξ,τ)

|D(I + itBD)−2(g − c)χj(x)|2 dx dt
t

.
ˆ τ

0
t−2θ

[ ˆ
B(ξ,2τ)

|(BD(I + itBD)−2(g − c)χj(x)|2 dx

+ τ−2
ˆ
B(ξ,2τ)

|(I + itBD)−2(g − c)χj(x)|2 dx
]
dt

t

.
ˆ τ

0
t−2θ

(
2jτ
t

)−2M (
t−2 + τ−2

)
||(g − c)χj||22

dt

t

.
2−2jM

τ 2(1+θ) ||(g − c)χj||
2
2 .

Furthermore, for each j ≥ 2 we have

||(g − c)χj||22 ≤
ˆ
A(ξ,2j−1τ,2j+2τ)

(̂
B(ξ,τ/2)

|g(x)− g(y)| dy
)2

dx

≤ τ−n
ˆ
B(ξ,τ/2)

ˆ
A(ξ,2j−1τ,2j+2τ)

|g(x)− g(y)|2 dx dy

. τ 2(1−θ)2j(n+2(1+θ))
ˆ
B(ξ,4τ)

ˆ
A(ξ,2j−1τ,2j+2τ)

|g(x)− g(y)|2
|x− y|n+2(1+θ) dx dy.

Putting these estimates together completes the proof of the lemma.

Proof of Theorem 6.2.12. Step 1: Reduction to a resolvent estimate.
As stated in [15, Proof of Lemma 15.1], there exists ρ ∈ H∞ of the form

ρ(z) =
N∑
m=1

cm(1 + imz)−2

for some scalars c1, . . . , cN ∈ C, and ψ ∈ Ψ2
N nondegenerate, such that

e−z = ρ(z) + ψ(z) for all z ∈ S+
µ .

We thus have∣∣∣∣∣∣C+
DBf

∣∣∣∣∣∣
Xp

.N

∣∣∣∣∣∣t 7→ (I + itDB)−2χ+(DB)f
∣∣∣∣∣∣
Xp

+
∣∣∣∣∣∣Qψ,DBχ

+(DB)f
∣∣∣∣∣∣
Xp
.

(6.19)
For N sufficiently large we have

ψ ∈ Ψ2
N ⊂ Ψ−θ(p)+

(θ(p)+n| 12−j(p)|)+ ∩Ψ+
+ ⊂ Ψ(Xp

DB),
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and so ∣∣∣∣∣∣Qψ,DBχ
+(DB)f

∣∣∣∣∣∣
Xp

. ||f ||Xp
DB
' ||f ||Xp

D

by Proposition 6.2.7 and p♥ ∈ I(X, DB∗). Therefore it suffices to prove the
estimate ∣∣∣∣∣∣t 7→ (I + itDB)−2f

∣∣∣∣∣∣
Xp

. ||f ||Xp
D

(6.20)

for all f ∈ R(DB). Applying this inequality to χ+(DB)f and invoking the
boundedness of χ+(DB) on Xp

DB will yield∣∣∣∣∣∣C+
DBf

∣∣∣∣∣∣
Xp

. ||f ||Xp
DB
' ||f ||Xp

D
.

To prove (6.20), by density (Corollary 6.1.7 and density of R(D) in X2
D),8 it

suffices to consider f = Dg for g ∈ D(D) ∩R(D) such that

||f ||Xp
D
' ||f ||Xp ' ||g||Xp+1

as in Lemma 6.2.2.
Step 2a: Completing the proof for Hardy–Sobolev spaces.
Suppose i(p) <∞ and (X,X) = (T,H). Lemma 6.2.15 and a crude estimate

give ¨
T (B(ξ,τ))

|t−θ(p)(I + itDB)−2f(x)|2 dx dt
t

.M

1 +
∞∑
j=2

2−2j(M−n2−(1+θ(p)))

ˆ
B(ξ,4τ)

|D2
1+θ(p)g(x)|2 dx,

and so by taking M > n
2 − (1 + θ(p)) we get¨

T (B(ξ,τ))
|t−θ(p)(I + itDB)−2f(x)|2 dx dt

t
.
ˆ
B(ξ,4τ)

|D2
1+θ(p)g(x)|2 dx.

Hence for all ξ ∈ Rn we have

C(t 7→ t−θ(p)(I + itDB)−2f)(ξ)2 . sup
τ>0

ˆ
B(ξ,4τ)

|D2
1+θ(p)g|2 =M2(D2

1+θ(p)g)(ξ)2,

and so by Theorem 5.1.9, boundedness ofM2 on Li(p) (since i(p) > 2), Lemma
5.1.49 (using 1 + θ(p) ∈ (0, 1)), Dg = f , and p ∈ I(H, DB), we get∣∣∣∣∣∣t 7→ (I + itDB)−2f

∣∣∣∣∣∣
Tp

.
∣∣∣∣∣∣M2(D2

1+θ(p)g)
∣∣∣∣∣∣
Li(p)

.
∣∣∣∣∣∣D2

1+θ(p)g
∣∣∣∣∣∣
Li(p)

' ||g||Ḣp+1

' ||f ||Hp
D
,

8When p is infinite, we use weak-star density.
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which completes the proof in the Hardy–Sobolev case.
Step 2b: Completing the proof for BMO-Sobolev spaces. Suppose

p = (∞, θ; 0) and (X,X) = (T,H). For all (t, x) ∈ R1+n
+ , Lemma 6.2.15 and the

Strichartz characterisation of ˙BMO1+θ (Theorem 5.1.51) yield(
t−n
¨
T (B(x,t))

|τ−θ(I + iτDB)−2f(ξ)|2 dξ dτ
τ

)1/2

.M t−n/2

tn ||g||2 ˙BMO1+θ
+
∞∑
j=2

2−2j(M−n2−(1+θ))(2j+2t)n ||g||2 ˙BMO1+θ

1/2

' ||g|| ˙BMO1+θ

1 +
∞∑
j=2

2−2j(M−n−(1+θ))

1/2

' ||g|| ˙BMO1+θ

provided that M is sufficiently large. Therefore we have as in the previous step∣∣∣∣∣∣τ 7→ (I + iτDB)−2f
∣∣∣∣∣∣
Tp

. ||g||Hp+1 ' ||f ||Hp
D
,

which completes the proof in the BMO-Sobolev case.
Step 2c: Completing the proof for Hölder spaces. Let p = (∞, θ;α).

First we prove the result for X = T . By the definition of the Hölder norm we
have

G(x, y) ≤ ||g||2Λ̇1+θ+α
|x− y|2α−n,

and so by Lemma 6.2.15,

t−α
(
t−n
¨
T (B(x,t))

|τ−θ(I + iτDB)−2f(ξ)|2 dξ dτ
τ

)1/2

.M t−α−
n
2 ||g||Λ̇1+θ+α

(¨
B(x,4t)2

dξ dη

|ξ − η|n−2α

+
∞∑
j=2

2−2j(M−n2−(1+θ))
ˆ
B(x,4t)

ˆ
A(x,2j−1t,2j+2t)

dξ dη

|ξ − η|n−2α

)1/2

. t−α−
n
2 ||g||Λ̇1+θ+α

tn+2α +
∞∑
j=2

2−2j(M−n2−(1+θ))2−j(n−2α)tn+2α

1/2

= ||g||Λ̇1+θ+α

for M sufficiently large. Therefore, by the same concluding argument as in the
previous steps, ∣∣∣∣∣∣τ 7→ (I + itDB)−2f

∣∣∣∣∣∣
Tp

. ||f ||Λ̇θ+α .
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In the case that X = Z, since p is infinite, Lemma 5.1.34 yields Tp ↪→ Zp,
and so by previous estimate we have∣∣∣∣∣∣τ 7→ (I + itDB)−2f

∣∣∣∣∣∣
Zp

.
∣∣∣∣∣∣τ 7→ (I + itDB)−2f

∣∣∣∣∣∣
Tp

. ||f ||Λ̇θ+α .

This completes the proof in the Hölder space case.
Step 2d: Completing the proof for Besov spaces.
Let p = (p, θ). We use a slightly different argument here. Fix cutoff functions

χ1, χ ∈ C∞c (Rn) with

suppχ1 ⊂ B(0, 4), χ1|B(0,2) ≡ const,
suppχ ⊂ A(0, 1/2, 4) χ|A(0,1,2) ≡ const,

for all integers j ≥ 2 define χj(x) := χ(2−jx), and for all j ≥ 1 define

ηj(t, x, ξ) := χj

(
x− ξ
t

)
((t, x) ∈ R1+n

+ , ξ ∈ Rn);

as before, these functions can be chosen such that ∑∞j=1 ηj = 1. Also define

g̃(t, x, ξ) := g(ξ)−
ˆ
B(x,t)

g(ζ) dζ ((t, x) ∈ R1+n
+ , ξ ∈ Rn)).

By the triangle inequality we have∣∣∣∣∣∣t 7→ (I + itDB)−2f
∣∣∣∣∣∣p
Zp
θ

.
∞∑
j=1

¨
R1+n

+

(̂ˆ
Ω(t,x)

|τ−θ(I + iτDB)−2D(g̃ηj(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t
, (6.21)

where the operators involving D and B act in the ξ variable. By using local
coercivity (Lemma 6.2.5) as in the proof of Lemma 6.2.15, the j-th term in (6.21)
can be estimated by

¨
R1+n

+

(̂ˆ
Ω(t,x)

|τ−θ(I + iτDB)−2D(g̃ηj(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t

.
¨

R1+n
+

(̂ˆ
Ωc(t,x)

|τ−θ−1(I + iτBD)−1(g̃ηj(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t

+
¨

R1+n
+

(̂ˆ
Ωc(t,x)

|τ−θ−1(I + iτBD)−2(g̃ηj(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t

with Whitney parameter c = (2, 2). The two terms in this sum differ only in the
power of the resolvent. The resolvent families (I + iτDB)−1 and (I + iτDB)−2
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both satisfy off-diagonal estimates of arbitrarily large order M (as off-diagonal
estimates may be composed); we will use this to estimate the terms above, making
reference only to (I + iτDB)−1.

For j = 1 we estimate

¨
R1+n

+

(̂ˆ
Ωc(t,x)

|τ−θ−1(I + iτBD)−1(g̃η1(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t

.
¨

R1+n
+

(
t−2θ−2−n

ˆ
B(x,4t)

|g̃(t, x, ξ)|2 dξ
)p/2

dx
dt

t

.
¨

R1+n
+

ˆ
B(x,4t)

ˆ
B(x,t)

∣∣∣∣∣g(ξ)− g(ζ)
tθ+1

∣∣∣∣∣
2

dζ dξ

p/2 dx dt
t

≤
¨

R1+n
+

ˆ
B(x,4t)

ˆ
B(x,t)

∣∣∣∣∣g(ξ)− g(ζ)
tθ+1

∣∣∣∣∣
p

dζ dξ dx
dt

t

=
ˆ
Rn

ˆ
Rn

ˆ ∞
0

ˆ
B(ξ,4t)∩B(ζ,t)

dx
1

t2n+p(θ+1)
dt

t
|g(ξ)− g(ζ)|p dζ dξ

≤
ˆ
Rn

ˆ
Rn

ˆ ∞
|ζ−ξ|/5

1
tn+p(θ+1)

dt

t
|g(ξ)− g(ζ)|p dζ dξ

'
ˆ
Rn

ˆ
Rn

|g(ξ)− g(ζ)|p
|ζ − ξ|n+p(θ+1) dζ dξ

' ||g||Ḃp,p
θ+1

' ||f ||Ḃp,p
θ
,

using that η1(t, x, ·) is supported in B(x, 4t), that p/2 > 1, that B(ξ, 4t)∩B(ζ, t)
is nonempty only if t > |ζ − ξ|/5, and the Besov norm characterisation from
Theorem 5.1.50.
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For j ≥ 2 we have, using off-diagonal estimates,
¨

R1+n
+

(̂ˆ
Ωc(t,x)

|τ−θ−1(I + iτBD)−1(g̃ηj(t, x, ξ))|2 dξ dτ
)p/2

dx
dt

t

. 2−j(Mp−(np)/2)
¨

R1+n
+

(
t−2θ−2

ˆ
A(x,2j−1t,2j+2t)

ˆ
B(x,t)

|g(ξ)− g(ζ)|2 dζ dξ
)p/2

dx
dt

t

≤ 2−j(Mp−(np)/2)
¨

R1+n
+

ˆ
A(x,2j−1t,2j+2t)

ˆ
B(x,t)

∣∣∣∣∣g(ξ)− g(ζ)
tθ+1

∣∣∣∣∣
p

dζ dξ dx
dt

t

= 2−j(Mp−(np)/2+n)·

·
ˆ
Rn

ˆ
Rn

ˆ ∞
0

1
t2n+p(θ+1)

ˆ
B(ζ,t)∩A(ξ,2j−1t,2j+1t)

dx
dt

t
|g(ξ)− g(ζ)|p dξ dζ

. 2−j(Mp−(np)/2+2n)
ˆ
Rn

ˆ
Rn

ˆ ∞
2−j |ζ−ξ|

1
tn+p(θ+1)

dt

t
|g(ξ)− g(ζ)|p dξ dζ

' 2−j(pM−(np)/2+n−p(θ+1)) ||f ||Ḃp,p
θ

arguing similarly to before. For M sufficiently large, we can thus estimate (6.21)
by summing a geometric series, yielding∣∣∣∣∣∣t 7→ (I + itDB)−2f

∣∣∣∣∣∣p
Zp
θ

. ||f ||Ḃp,p
θ

as required. This completes the proof.
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Chapter 7

Elliptic equations,
Cauchy–Riemann systems, and
boundary value problems

In this section we implicitly work with a fixed m ∈ N, meaning that we consider
LAu = 0 with u a Cm-valued function. All of our arguments are independent of
m. As in the previous section, we fix the Dirac operator D and multipliers B
from Subsection 4.1.2.

7.1 Basic properties of solutions

We will use the following properties of conormal gradients of solutions to LAu = 0
(or equivalently, of solutions to (CR)DÂ; see Theorem 4.1.3 in the introduction).

Proposition 7.1.1. Suppose that u solves LAu = 0. Then the following are true.

(1) The transversal derivative ∂tu solves LA(∂tu) = 0.

(2) The function t 7→ ∇Au(t, ·) is in C∞(R+ : L2
loc(Rn)), and for all Whitney

parameters c = (c0, c1) and t ∈ R+ we have

ˆ
B(x,c0t)

|∇Au(t, x)|2 dx .
ˆ̂

Ωc(t,x)
|∇Au(s, y)|2 ds dy.
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(3) For all exponents p, all k ∈ N, and all C ≥ 1 we have

sup
t,t′∈R+

C−1≤t/t′≤C

∣∣∣∣∣∣∂kt∇Au(t, ·)
∣∣∣∣∣∣
Ep−k(t′)

.C

∣∣∣∣∣∣∂kt∇Au
∣∣∣∣∣∣
Xp−k

=
∣∣∣∣∣∣∇A∂

k
t u
∣∣∣∣∣∣
Xp−k

. ||∇Au||Xp .

In particular, if ∇Au is in Xp, then the function t 7→ ∇Au(t, ·) is in C∞(R+ :
Ep)

Proof. (1) follows from t-independence of the coefficients. The remaining state-
ments are consequences of the classical Caccioppoli inequality, and are proven in
[15, §5] for tent spaces. The corresponding Z-space statements are proven in the
same way.

Remark 7.1.2. By Theorem 4.1.3, if F is a solution to the Cauchy–Riemann
system (4.6), then parts (2) and (3) of Proposition 7.1.1 hold with ∇Au replaced
by F .

Furthermore, suppose that G solves the anti-Cauchy–Riemann system

(aCR)DB :

 ∂tG−DBG = 0 in R1+n
+ ,

curl‖G‖ = 0 in R1+n
+

(7.1)

defined analogously to (CR)DB but with a sign change. Then the reflection
F (t) := G(−t) solves (CR)DB on the lower half-space R1+n

− . By using X-spaces
associated with the lower half-space rather than the upper half-space, parts (2)
and (3) of Proposition 7.1.1 hold with ∇Au replaced by F and with R+ replaced
by R−. A simple reflection argument then shows parts (2) and (3) of Proposition
7.1.1 hold for G.

The following technical lemma is analogous to [15, Lemma 10.2].

Lemma 7.1.3. Fix p with i(p) < 2 and θ(p) < 0, suppose M ∈ N, and let
f ∈ Xp

DB. Then for all t > 0 we have that (tDB)Me−t[DB]χ±(DB)f ∈ Ep, with

sup
t>0

∣∣∣∣∣∣(tDB)Me−t[DB]χ±(DB)f
∣∣∣∣∣∣
Ep(t)

. ||f ||Xp
DB
.

Proof. We estimate

sup
t>0

∣∣∣∣∣∣(tDB)Me−t[DB]χ±(DB)f
∣∣∣∣∣∣
Ep(t)

.
∣∣∣∣∣∣t 7→ (tDB)Me−t[DB]χ±(DB)f

∣∣∣∣∣∣
Xp

' ||f ||Xp
DB
.
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The first line comes from Proposition 7.1.1, using that (DB)Me−t[DB]χ±(DB)f
solves either (CR)DB or (aCR)DB. The second line is due to the fact that [z 7→
zMe−[z]] ∈ Ψ(Xp

DB) when i(p) < 2 and θ(p) < 0.

7.2 Decay of solutions at infinity

In the boundary value problems introduced in Subsection 4.1.1, we have imposed
the decay condition

lim
t→∞
∇‖u(t, ·) = 0 in Z ′(Rn : Cmn)

for a solution u to LAu with ∇u in Xp. In this section we will show that this
condition is redundant for certain p (quantified in terms of A). In fact, our results
give not just decay in Z ′, but in the slice space E∞ (in the setting of Lemma
7.2.1) or in L2 (in Lemma 7.2.4).1

Classical elliptic theory implies that there exists a number λ(A) ∈ (0, n + 1)
such that for all λ ∈ [0, λ(A)), for all (t0, x0) ∈ Rn+1

+ and 0 < r < R < ∞, and
for all weak solutions u to LAu = 0, we have

¨
B((t0,x0),r)

|∇u(t, x)|2 dx dt .λ

(
r

R

)λ¨
B((t0,x0),R)

|∇u(t, x)|2 dx dt, (7.2)

whereB((t0, x0), r) andB((t0, x0), R) denote open balls in R1+n, withB((t0, x0), R)
contained in R1+n

+ . These balls can be taken with respect to any norm on R1+n,
keeping in mind that the implicit constant in (7.2) will depend on the chosen
norm. By ellipticity we may replace the gradient ∇ with the conormal gradient
∇A in (7.2).

Lemma 7.2.1. Suppose that the exponent p lies in the shaded region pictured in
Figure 7.1, which depends on λ(A). Let u be a solution to LAu = 0 on R1+n

+ such
that ∇Au ∈ Xp. Then limt→∞∇Au(t, ·) = 0 in E∞ (and therefore also in Z ′).

Remark 7.2.2. The shaded region in Figure 7.1 is the open half-plane determined
by the equation j(p) > θ(p)

n
− n+1−λ(A)

2n . Note that n+1−λ(A)
2n ≥ 1

2 when λ(A) ≤
1. In Lemma 7.2.4 we will handle exponents p with i(p) ≤ 2 and θ(p) < 0
independently of λ(A).

1Demanding decay in Z ′ is really just an artefact of having identified the classical smoothness
spaces Xp as subspaces of Z ′.
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Figure 7.1: The exponent region in Lemma 7.2.1.

θ

λ(A)−(n+1)
2

1
2

n+1−λ(A)
2n

j

Proof. The region pictured in Figure 7.1 is precisely the set of exponents p such
that there exists an infinite exponent q with p ↪→ q and r(q) < λ(A)−(n+1)

2 . Fix
such a q. For all λ < λ(A) we can estimate

||∇Au(t, ·)||E∞0 (1) ' sup
x∈Rn

(ˆ
B(x,1)

|∇Au(t, y)|2 dy
)1/2

. sup
x∈Rn

ˆ t+ 1
2

t− 1
2

ˆ
B(x,1)

|∇Au(s, y)|2 dy ds
1/2

(7.3)

. sup
x∈Rn

t−λ ˆ t+ t
2

t− t2

ˆ
B(x,t)

|∇Au(s, y)|2 dy ds
1/2

(7.4)

. t
(n+1)−λ

2 +r(q)

ˆ t+ t
2

t− t2

||∇Au(s, ·)||2Eq(s) ds

1/2

. t
(n+1)−λ

2 +r(q) ||∇Au||Xp

where (7.3) follows from Proposition 7.1.1, (7.4) follows from (7.2),2 and the
last line follows from the embeddings Ep(s) ↪→ Eq(s) and another application of
Proposition 7.1.1. For λ sufficiently close to λ(A) we have (n+1−λ)/2+r(q) < 0,
and so we find that limt→∞∇Au(t, ·) = 0 in E∞.

Remark 7.2.3. It is known that λ(A) > n − 1 if and only if A satisfies the De
Giorgi–Nash–Moser condition (7.51) of all exponents less than α = (λ(A)− (n−
1))/2. In this case we have λ(A)−(n+1)

2 = α − 1 and n+1−λ(A)
2n = 1−α

n
, and Lemma

7.2.1 then holds for the shaded region pictured in Figure 7.2. Evidently this
region increases as the De Giorgi–Nash–Moser exponent α increases.

2Here we use the balls B((t, x), r) := (t− r/2, t+ r/2)×B(x, r).
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Figure 7.2: The region in Lemma 7.2.1 in the case that A satisfies the De Giorgi–
Nash–Moser condition with exponent α.

θ

α− 1

1
2

1−α
n

−1

j

A different argument can be used to deduce decay in L2 for exponents p with
i(p) ≤ 2 and θ(p) < 0.

Lemma 7.2.4. Let p = (p, s) with i(p) ≤ (0, 2] and θ(p) < 0, and suppose
F ∈ Xp solves (CR)DB or (aCR)DB. Then limt→0 F (t) = 0 in L2.

Proof. By Proposition 7.1.1, for all t ∈ R+ we have

||F (t)||Ep(t) . ||F ||Xp ,

and so

||F (t)||L2 . ||F (t)||
E
i(p)
0 (t) = tθ(p) ||F (t)||Ep(t) . tθ(p) ||F ||Xp

using the embedding Ei(p)
0 (t) ↪→ E2

0(t) = L2.3 Since θ(p) < 0, we have

lim
t→∞

F (t) = 0

in L2.

7.3 Classification of solutions to
Cauchy–Riemann systems

In this section we will prove the following classification theorems for solutions to
(CR)DB (as formulated in Subsection 4.1.2 of the introduction).

3The equality E2
0(t) = L2 is a consequence of Fubini’s theorem.
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Theorem 7.3.1 (Classification of solutions to (CR)DB, i(p) ≤ 2). Let p = (p, s)
with p ≤ 2 and s < 0, and fix a completion Xp

DB of Xp
DB.

(i) For all F0 ∈ Xp,+
DB , C+

DBF0 solves (CR)DB, and
∣∣∣∣∣∣C+

DBF0

∣∣∣∣∣∣
Xp

. ||F0||Xp
DB

.

(ii) Conversely, if F ∈ Xp solves (CR)DB, then there exists a unique F0 ∈ Xp,+
DB

such that F = C+
DBF0. Furthermore, ||F0||Xp

DB
. ||F ||Xp.

When p > 2 the argument is much more complicated, we must restrict atten-
tion to exponents p such that the adapted space Xp♥

DB may be identified with the
classical space Xp♥

D , and we need an additional decay condition on F .

Theorem 7.3.2 (Classification of solutions to (CR)DB, i(p) > 2). Let p be an
exponent with i(p) > 2 and θ(p) ∈ (−1, 0), and such that p♥ ∈ I(X, DB∗). In
particular, for such p we have identified Xp,+

DB as a subspace of Xp
D.

(i) If F0 ∈ Xp,+
DB , then C+

DBF0 solves (CR)DB, limt→∞C+
DBF0(t)‖ = 0 in Z ′(Rn :

Cnm), and
∣∣∣∣∣∣C+

DBF0

∣∣∣∣∣∣
Xp

. ||F0||Xp
DB

.

(ii) Conversely, if F ∈ Xp solves (CR)DB and limt→∞ F (t)‖ = 0 in Z ′(Rn :
Cnm), then there exists a unique F0 ∈ Xp,+

DB = Xp
D such that F = C+

DBF0.
Furthermore, ||F0||Xp

DB
. ||F ||Xp.

Note that if p is finite, then p♥ ∈ I(X, DB∗) if and only if p ∈ I(X, DB)
(Proposition 6.2.7). Note also that if p is in the region given by Lemma 7.2.1,
then the decay condition on F is redundant. In particular, this holds for all p as
in Theorem 7.3.1, so the decay condition need not be included there.

7.3.1 Construction of solutions via Cauchy extension

Here we will prove part (i) of Theorems 7.3.1 and 7.3.2. We will deal with both
theorems simultaneously

Let F0 ∈ Xp,+
DB . Then the estimate

∣∣∣∣∣∣C+
DBF0

∣∣∣∣∣∣
Xp

. ||F0||Xp
DB

follows from
either Theorem 6.1.25 or Theorem 6.2.12.

In Proposition 6.1.24 we showed that C+
DBF0 solves (CR)DB strongly in Xp,+

DB .
Generally Xp,+

DB need not be contained in L2
loc(Rn), and so these two solution

concepts need not coincide. We must argue differently here. If F0 ∈ R(DB), then
Proposition 5.2.6 implies that C+

DBF0 solves (CR)DB strongly in C∞(R+ : L2), and
this implies that C+

DBF0 solves (CR)DB. It remains to deal with F0 ∈ Xp
DB \X

p
DB.

For such an F0, let (F k
0 )k∈N be a sequence in Xp

DB which converges to F0 as k →∞
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(in the weak-star topology when p is infinite). Then, again using either Theorem
6.1.25 or Theorem 6.2.12, we have

lim
k→∞

C+
DBF

k
0 = C+

DBF0 in Xp,

and hence also in L2
loc(R1+n

+ ). It follows that C+
DBF0 solves (CR)DB.

It remains to show that limt→∞C+
DBF0(t)‖ = 0 in Z ′(Rn : Cnm) when i(p) > 2.

This follows from Proposition 6.1.24, since we have limt→∞C+
DBF0(t) = 0 in

Xp
DB ↪→ Z ′.

7.3.2 Initial limiting arguments

We now begin preparation for the proof of part (ii) of Theorems 7.3.1 and 7.3.2.
This section is a rephrasing of the start of [15, §8]. There are no fundamentally
new ideas, but the notation and the flow of ideas are simplified.

For t0 ∈ R+ we write Rt0 := R \ {t0} and R+,t0 := R+ \ {t0}.

Definition 7.3.3. For t0 ∈ R+ and ϕ ∈ L2(Rn), we define the test function
Gt0,ϕ ∈ C∞(R+,t0 : D(B∗D)) by

Gt0,ϕ(t) := sgn(t0 − t)e−[(t0−t)B∗D]χsgn(t0−t)(B∗D)PR(B∗D)ϕ

for all t ∈ R+,t0 .

Note that ∂tGt0,ϕ = B∗DGt0,ϕ. Also observe that since D annihilates the
nullspace N2(B∗D) and since L2(Rn) = N2(B∗D) ⊕ R(B∗D), whenever ϕ ∈
D(D),

DGt0,ϕ(t) = sgn(t0 − t)e−[(t0−t)DB∗]χsgn(t0−t)(DB∗)Dϕ. (7.5)

The following lemma is a rewording of [15, Lemma 7.4].

Lemma 7.3.4. Let F solve (CR)DB. Fix ϕ ∈ L2(Rn), t0 ∈ R+, and let η ∈
Lip(R+ : R) and χ ∈ Lip(Rn : R) be compactly supported in R+,t0 and Rn respec-
tively. Then we have, with absolutely convergent integrals,

¨
R1+n

+

〈η′(t)χ(x)B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt

=
¨

R1+n
+

〈η(t)B∗[D,mχ] ∂tGt0,ϕ(t, x), F (t, x)〉 dx dt (7.6)

where mχ denotes the multiplication operator on L2(Rn) with symbol χ.

209



As a corollary, under an integrability condition involving F and ϕ, we can
obtain the following.

Corollary 7.3.5. Let F , ϕ, and t0 be as in the statement of Lemma 7.3.4. Sup-
pose also that for all compact K ⊂ R+,t0 we have

1K(t)|B∗DGt0,ϕ(t, x)||F (t, x)| ∈ L1(R1+n
+ ). (7.7)

Then for all η ∈ Lip(R+ : R) compactly supported in R+,t0, we have the absolutely
convergent integral¨

R1+n
+

〈η′(t)B∗DGt0,ϕ(t, x), F (t, x)〉 dt dx = 0. (7.8)

Proof. Fix χ ∈ Lip(Rn : R) with χ(x) = 1 for all x ∈ B(0, 1), and for R > 0
define χR(x) := χ(x/R). Then χR → 1 and [D,mχR ]→ 0 pointwise as R→∞,4

since ||[D,mχR ]||∞ . R−1 ||∇χ||∞. Condition (7.7) applied with K = supp η, the
fact that ∂tGt0,ϕ = B∗DGt0,ϕ, and boundedness of η and η′ imply

|η′(t)B∗DGt0,ϕ(t, x)||F (t, x)| ∈ L1(R1+n
+ ) and

|η(t)∂tGt0,ϕ(t, x)||F (t, x)| ∈ L1(R1+n
+ ).

This allows us to deduce (7.8) from the equality of Lebesgue integrals (7.6) and
dominated convergence.

Now, assuming that (7.7) holds, we can conclude the following.

Corollary 7.3.6. Let F , ϕ, and t0 be as in the statement of Lemma 7.3.4. As-
sume also that condition (7.7) is satisfied. Then for sufficiently small ε > 0 we
have ˆ t0+2ε

t0+ε

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt

=
ˆ t0+ε−1

t0+(2ε)−1

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt (7.9)

and

−
ˆ 2ε

ε

ˆ
Rn
〈B∗DGt0,ϕ(t0 − t, x), F (t0 − t, x)〉 dx dt

=
ˆ 2ε

ε

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt. (7.10)

These are all absolutely convergent integrals.
4More precisely, [D,mχR

] is given by multiplication with a function that tends to 0 pointwise.
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Figure 7.3: The functions η1 and η2.
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1
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Proof. As in [15, §8, Step 1b] this follows from applying Corollary 7.3.5 with the
piecewise linear functions η1, η2 ∈ Lip(R+ : R) drawn in Figure 7.3, where we
impose ε < min(t0/4, 1/4, 1/t0) (we have carried out a change of variables in the
left hand side of (7.10)).

7.3.3 Proof of Theorem 7.3.1

Recall that part (i) has already been proven in Subsection 7.3.1; here we prove
part (ii).

All of the results in this section are valid for p = (p, s) such that p ≤ 2 and
s < 0. We do not ‘fix’ such a p, however, because in the final step we will invoke
prior results with a different choice of p.

Step 1: Verification and application of initial limiting arguments.

Lemma 7.3.7. Let ϕ ∈ L2(Rn). Then we have 1K×RnB∗DGt0,ϕ ∈ Xp′ for all
compact K ⊂ R+,t0, with

||1K×RnB∗DGt0,ϕ||Xp′ . ||ϕ||2 dist(K, t0)−1K
s+nδp,2
− (7.11)

where K− = inf(K).

Proof. First we note that the estimate

||1K×RnB∗DGt0,ϕ||X2
−s−nδp,2

. ||ϕ||2 dist(K, t0)−1K
s+nδp,2
−

can be shown by writing

||1K×RnB∗DGt0,ϕ||X2
−s−nδp,2

=
(ˆ K+

K−

∣∣∣∣∣∣ts+nδp,2B∗DGt0,ϕ

∣∣∣∣∣∣2
2

dt

t

)1/2

. ||ϕ||2

(ˆ K+

K−

t2(s+nδp,2) dist(K, t0)−2 dt

t

)1/2

(7.12)

. ||ϕ||2 dist(K, t0)−1K
s+nδp,2
− . (7.13)
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The estimate (7.12) follows by writing

B∗DGt0,ϕ = sgn(t0 − t)
t0 − t

(t0 − t)B∗De−[(t0−t)B∗D]χsgn(t0−t)(B∗D)PR(B∗D)ϕ

and noting that the operator

(t0 − t)B∗De−[(t0−t)B∗D]χsgn(t0−t)(B∗D)PR(B∗D)

is bounded on L2(Rn) uniformly in t ∈ R+,t0 , and that |(t0− t)−1| . dist(K, t0)−1

for t ∈ K. Then (7.13) follows because s + nδp,2 is negative whenever s < 0 and
p < 2.

Now use the X-space embeddings to write

X2
−s−nδp,2 ↪→ Xp′ ,

from which follows (7.11).

Corollary 7.3.8. Let ϕ ∈ L2(Rn), and suppose that F ∈ Xp solves (CR)DB.
Then

lim
ε→0

ˆ t0+2ε

t0+ε

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt = 0. (7.14)

Proof. For ε > 0 small the previous lemma yields∣∣∣∣∣∣1[t0+(2ε)−1,t0+ε−1]×RnB
∗DGt0,ϕ

∣∣∣∣∣∣
Xp′

. ||ϕ||2 (2ε)(t0 + (2ε)−1)s+nδp,2 ,

which decays as ε→ 0 since s+nδp,2 is negative when s < 0 and p ≤ 2. Therefore
in particular, by X-space duality, condition (7.7) is satisfied, and by boundedness
of the above quasinorms as ε→ 0 we can take the ε→ 0 limit in (7.9) to obtain
(7.14).

Step 2: Semigroup property of F .

Lemma 7.3.9. Suppose F ∈ Xp solves (CRDB). Then F ∈ C∞(R+ : H2
DB),

F (t) ∈ D(DB) for all t > 0, and ∂tF + DBF = 0 holds strongly in C∞(R+ :
H2
DB).

Proof. We already have that F ∈ C∞(R+ : L2
loc(Rn)) from Proposition 7.1.1,

and furthermore that ∂tF ∈ Xp−1. Hence we have F (t0), (∂tF )(t0) ∈ Ep for all
t0 ∈ R+, and therefore by the slice space containments of Proposition 5.1.42 we
obtain F (t0), (∂tF )(t0) ∈ L2 for all t0 ∈ R+. Therefore F (t0) ∈ D(DB) for all
t0 ∈ R+, and ∂tF + DBF = 0 holds in L2. We can iterate this argument by
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reapplying ∂t, as this preserves the property of solving (CR)DB as well as the
previously stated L2 containments, so we obtain F ∈ C∞(R+ : L2).

Now since limt0→∞ F (t0) = 0 in L2 (Lemma 7.2.4), we can write

F (t0) = −
ˆ ∞
t0

(∂tF )(τ) dτ = −
ˆ ∞
t0

DB(F (τ)) dτ ∈ R(DB)

by the fundamental theorem of calculus. Therefore F (t0) ∈ H2
DB for all t0, and

since the H2
DB-norm is equivalent to the L2-norm when restricted to R(DB), this

completes the proof.

Lemma 7.3.10. Suppose that F ∈ Xp solves (CR)DB. Then for all t0 > 0 and
τ ≥ 0 we have F (t0) ∈ H2,+

DB = R(DB)+ and

F (t0 + τ) = e−τDB(F (t0)). (7.15)

Proof. For all ϕ ∈ L2(Rn), the function t 7→ B∗DGt0,ϕ(t) is smooth in t ∈ R+,t0

with values in H2
B∗D and with

lim
t↓t0

B∗DGt0,ϕ(t) = −B∗Dχ−(B∗D)PR(B∗D)ϕ

in H2
B∗D. Furthermore, by Lemma 7.3.9, t 7→ F (t) is smooth in t ∈ R+ with

values in H2
DB. Therefore we may write for all ϕ ∈ L2(Rn), using (7.14) from

Corollary 7.3.8,

0 = lim
ε→0

ˆ t0+2ε

t0+ε

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt

= lim
ε→0

ˆ t0+2ε

t0+ε
〈B∗DGt0,ϕ(t), F (t)〉H2

B∗D
dt

= −〈B∗Dχ−(B∗D)PR(B∗D)ϕ, F (t0)〉H2
B∗D

. (7.16)

Hence for all φ ∈ R(B∗D) and all δ > 0, since e−δ[B∗D] maps H2,−
B∗D into itself,

applying (7.16) to ϕ = e−δ[B
∗D]φ yields

〈B∗DeδB∗Dχ−(B∗D)φ, F (t0)〉H2
B∗D

= 0. (7.17)

The subspace

{B∗DeδB∗Dχ−(B∗D)φ : φ ∈ R(B∗D)} ⊂ L2(Rn)

is dense in H2,−
B∗D (see [15, p. 28]), so (7.17) and the decomposition H2

DB =
H2,+
DB ⊕H2,−

DB imply that F (t0) ∈ H2,+
DB.
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Now we will derive the semigroup equation (7.15). For all δ ≥ 0 and ϕ ∈ H2
B∗D,

define

ϕδ := e−δ[B
∗D]ϕ

and

Iε,δt0,ϕ :=
ˆ 2ε

ε

〈B∗DGt0,ϕδ(t), F (t)〉H2
B∗D

dt.

Then by (7.10), using the same argument as before to write everything in terms
of H2

B∗D-duality, we have

lim
ε→0

Iε,δt0,ϕ = − lim
ε→0

ˆ 2ε

ε

〈B∗De−tB∗De−δB∗Dχ+(B∗D)ϕ, F (t0 − t)〉H2
B∗D

dt

= −〈B∗De−δB∗Dχ+(B∗D)ϕ, F (t0)〉H2
B∗D

.

Therefore for all τ ≥ 0, δ ≥ 0, and ϕ ∈ H2
B∗D, using I

ε,δ+τ
t0,ϕ = Iε,τt0+δ,ϕ, we have

〈B∗De−δB∗Dχ+(B∗D)ϕ, e−τDB(F (t0))〉H2
B∗D

= 〈B∗De−(δ+τ)B∗Dχ+(B∗D)ϕ, F (t0)〉H2
B∗D

= − lim
ε→0

Iε,δ+τt0,ϕ

= − lim
ε→0

Iε,δt0+τ,ϕ

= 〈B∗De−δB∗Dχ+(B∗D)ϕ, F (t0 + τ)〉H2
B∗D

.

As before, the subspace {B∗De−δB∗Dχ+(B∗D)ϕ : ϕ ∈ H2
B∗D} is dense in H2,+

B∗D,
so by duality we have F (t0 + τ) = e−τDBF (t0) in H2,+

DB for all t0 > 0 and all
τ ≥ 0.

Step 3: Completing the proof.

Proposition 7.3.11 (Existence of boundary trace). Suppose that F ∈ Xp solves
(CR)DB, and let Xp

DB be a completion of Xp
DB. Then there exists a unique F0 ∈

Xp,+
DB such that F = C+

DBF0. Furthermore, ||F0||Xp
DB

. ||F ||Xp.

Proof. Fix an exponent p̃ with i(p̃) ∈ (1, 2] and θ(p̃) < 0 such that p ↪→ p̃ (when
p > 1 we may take p̃ = p). By Lemma 7.3.10 we have F (t0) ∈ H2,+

DB ∩D(DB) for
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all t0 > 0. We can then estimate

||F (t0)||Xp̃
DB
' ||DBF (t0)||Xp̃−1

DB
(7.18)

=
∣∣∣∣∣∣τ 7→ e−τDB(DBF )(t0)

∣∣∣∣∣∣
Xp̃−1

(7.19)

= ||τ 7→ DBF (t0 + τ)||Xp̃−1 (7.20)
= ||St0DBF ||Xp̃−1

. ||DBF ||Xp̃−1 (7.21)
= ||∂tF ||Xp̃−1

. ||F ||Xp̃ (7.22)

. ||F ||Xp . (7.23)

The first line (7.18) is from Corollary 6.1.14. Line (7.19) comes from Theorem
6.1.25. Line (7.20) comes from Lemma 7.3.10, (7.21) comes from Proposition
5.1.36 because i(p̃− 1) ≤ 2 and s(p̃− 1) ≤ −1/2, (7.22) comes from Proposition
7.1.1, and finally (7.23) follows from X-space embeddings by p ↪→ p̃. Therefore
F (t0) ∈ Xp̃,+

DB uniformly in t0 > 0.
Since Xp̃,+

DB is the dual of Xp̃′,+
B∗D for any completion Xp̃′,+

B∗D of Xp̃′,+
B∗D, there exists

a sequence tk ↓ 0 and an F0 ∈ Xp̃,+
DB such that F (tk) converges weakly to F0 in

Xp̃,+
DB as k →∞. We thus have for all ϕ ∈ Xp̃′,+

B∗D and for all τ > 0,

〈ϕ, e−τDBF0〉Xp̃′
B∗D

= 〈e−τB∗Dϕ, F0〉Xp̃′
B∗D

= lim
k→∞
〈e−τB∗Dϕ, F (tk)〉Xp̃′

B∗D

= lim
k→∞
〈ϕ, e−τDBF (tk)〉Xp̃′

B∗D

= lim
k→∞
〈ϕ, F (tk + τ)〉Xp̃′

B∗D
(7.24)

= 〈ϕ, F (τ)〉Xp̃′
B∗D

(our notation for duality pairings is explained in Section 4.3), using Lemma 7.3.10
in (7.24). Therefore by density we have C+

DBF0 = F .
It only remains to show that F0 is in Xp,+

DB , with the right quasinorm estimate,
and uniquely determined. Recall that C+

DB = Qsgp,DB when restricted to the
positive spectral subspace. Let ϕ ∈ Ψ∞∞ be a Calderón sibling of sgp. Then
F0 = Sϕ,DBQsgp,DBF0 = Sϕ,DBF , and so by Proposition 6.1.17 we have F0 ∈ Xp

DB

with ||F0||Xp
DB

. ||F ||Xp . In fact, since F (t0) ∈ H2,+
DB for all t0 > 0, we find that

F is in the positive subspace Xp,+
DB . Uniqueness follows by injectivity of Qsgp,DB

(Proposition 6.1.17).

This completes the proof of Theorem 7.3.1.
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7.3.4 Proof of Theorem 7.3.2

Recall that part (i) has already been proven in Subsection 7.3.1; here we prove
part (ii).

Our proof roughly follows that of [15, Theorem 1.3], arguing via a series of
rather technical lemmas. In this section we will continually assume that p satisfies
the assumptions of Theorem 7.3.2. Most of the lemmas work without assuming
p♥ ∈ I(X, DB∗), but we gain nothing from dropping this assumption.

Step 1: Establishing a good class of test functions.

We define the following class of test functions for Xp
DB:

Dp(X) :=
{
ϕ ∈ D(D) : Dϕ ∈ Xp♥

DB∗ , χ
±(DB∗)Dϕ ∈ Ep♥

}
.

This is large enough to contain the Schwartz functions and to be stable under
the action of various operators, yet it is restrictive enough to let us exploit slice
space containments.

Lemma 7.3.12. The Schwartz class S(Rn : Cm(1+n)) is contained in Dp(X).

Proof. Suppose ϕ ∈ S. Then ϕ ∈ D(D) and Dϕ ∈ Xp♥
D = Xp♥

DB∗ by the assump-
tion on p. It remains to show that χ±(DB∗)Dϕ ∈ Ep♥ , and this takes some
work. This is a modification of the argument of [15, Lemma 8.10].

Since Dϕ ∈ S ⊂ Ep♥ (Proposition 5.1.43) and since

Dϕ = χ+(DB∗)Dϕ+ χ−(DB∗)Dϕ

it suffices to show that χ+(DB∗)Dϕ is in Ep♥ .
Define ψ ∈ Ψ∞N , with N large to be chosen later, by

ψ(z) := [z]Ne−[z]

N ! .

Then for all t ∈ R \ {0} we have
ˆ ∞

0
ψ(st) ds

s
= 1
N !

ˆ ∞
0

sNe−s
ds

s
= 1,

so by holomorphy we have ˆ ∞
0

ψ(sz) ds
s

= 1
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for all z ∈ Sµ. By the same argument, along with integration by parts and
induction on N , for all z ∈ Sµ we have

ˆ ∞
1

ψ(sz) ds
s

= P ([z])e−[z]

where P is a real polynomial of degree N − 1. Therefore by functional calculus
on R(DB∗) we may write

χ+(DB∗)Dϕ =
ˆ 1

0
(ψχ+)(sDB∗)Dϕ ds

s
+ P (DB∗)e−DB∗χ+(DB∗)Dϕ.

By Lemma 7.1.3 (using i(p♥) < 2 and θ(p♥) < 0) we have

P (DB∗)e−DB∗χ+(DB∗)Dϕ ∈ Ep♥ ,

so it suffices to show that
ˆ 1

0
(ψχ+)(sDB∗)Dϕ ds

s
∈ Ep♥ .

For f ∈ L2(Rn) write

G(f) :=
ˆ 1

0
(ψχ+)(sDB∗)f ds

s
;

since ψχ+ ∈ Ψ∞+ this is defined for all f ∈ L2(Rn) (not just f ∈ R(DB∗)).
Note that the family ((ψχ+)(sDB∗))s>0 satisfies off-diagonal estimates of order
N (Theorem 5.2.8). For Q,R ∈ D1 (recall that D1 is the set of standard dyadic
cubes in Rn with sidelength 1) with d(Q,R) ≥ 1 we can estimate

||G(1RDϕ)||L2(Q) =
ˆ

Q

∣∣∣∣∣
ˆ 1

0
(ψχ+)(sDB∗)1RDϕ(x) ds

s

∣∣∣∣∣
2

dx

1/2

≤
ˆ 1

0

∣∣∣∣∣∣(ψχ+)(sDB∗)1RDϕ
∣∣∣∣∣∣
L2(Q)

ds

s

.
ˆ 1

0

(
d(Q,R)

s

)−N
ds

s
||1RDϕ||2

' d(Q,R)−N ||1RDϕ||2 .

For all other Q,R ∈ D1 we have instead

||G(1RDϕ)||L2(Q) . ||1RDϕ||2 .
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Therefore by the discrete characterisation of slice spaces (Proposition 5.1.45),
writing R ∼ Q to mean that dist(R,Q) = 0 and noting that dist(R,Q) ≥ 1 if
R 6∼ Q,

||G(Dϕ)||
Ep♥ '

 ∑
Q∈D1

||G(Dϕ)||i(p
♥)

L2(Q)

1/i(p♥)

.

 ∑
Q∈D1

∑
R∼Q

+
∑
R 6∼Q

 ||G(1RDϕ)||i(p
♥)

L2(Q)

1/i(p♥)

.

 ∑
Q∈D1
R∼Q

||Dϕ||i(p
♥)

L2(R)


1/i(p♥)

+

 ∑
Q∈D1
R 6∼Q

d(Q,R)Ni(p♥) ||Dϕ||i(p
♥)

L2(R)


1/i(p♥)

=: I1 + I2.

Since the number of cubes R ∈ D1 such that R ∼ Q is uniform in Q, we have

I1 '

 ∑
R∈D1

||Dϕ||i(p
♥)

L2(R)

1/i(p♥)

' ||Dϕ||
Ep♥ .

To handle I2 write

I2 =
 ∑
R∈D1

||Dϕ||i(p
♥)

L2(R)

∞∑
k=1

kNi(p
♥)|{Q ∈ D1 : d(Q,R) = k}|

1/i(p♥)

(7.25)

'N,p♥,n ||Dϕ||Ep♥

using that the innermost sum in (7.25) is independent of R and convergent for
N sufficiently large. Therefore

||G(Dϕ)||
Ep♥ . ||Dϕ||

Ep♥ <∞

which shows that χ+(DB∗)Dϕ ∈ Ep♥ and completes the proof.

Lemma 7.3.13. We have the following stability properties of Dp(X):

(i) for all δ > 0 we have e−δ[B∗D]Dp(X) ⊂ Dp(X),

(ii) χ±(B∗D)Dp(X) ⊂ Dp(X),
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Proof. (i) The function [z 7→ e−δ[z]] is in H∞ and has a polynomial limit at 0,
so e−δ[B∗D]ϕ may be defined for all ϕ ∈ D(D) (not just those in R(B∗D)).5

For all such ϕ we can write using the similarity of functional calculi

D(e−δ[B∗D]ϕ) = e−δ[DB
∗]Dϕ. (7.26)

Since Dϕ is in Xp♥
DB∗ , so is D(e−δ[B∗D]ϕ). To see the slice space containments

of spectral projections, write

χ±(DB∗)D(e−δ[B∗D]ϕ) = e−δ[DB
∗]χ±(DB∗)Dϕ.

By assumption χ±(DB∗)Dϕ is in Ep♥ ∩ Xp♥,±
DB∗ ⊂ Ep♥ ∩ X2,±

DB∗ , and by
Corollary 6.1.28, e−δ[DB∗]χ±(DB∗)Dϕ is in Ep♥ .

(ii) Similarly, we have χ±(B∗D)D2(D) ⊂ D2(B∗D), and by similarity of func-
tional calculi

Dχ±(B∗D)ϕ0 = χ±(DB∗)Dϕ0 ∈ Xp♥
DB∗

and

χ±(DB∗)Dχ±(B∗D)ϕ = χ±(DB∗)Dϕ0 ∈ Ep♥ ,

χ∓(DB∗)Dχ±(B∗D)ϕ = 0 ∈ Ep♥ .

Lemma 7.3.14. Suppose that ϕ ∈ Xp′
B∗D∩D(B∗D). Then χ±(DB∗)e−t[DB∗]/2Dϕ

is defined and in Ep′ for all t > 0. Furthermore, e−[B∗D]/2ϕ ∈ Dp(X).

Proof. Note that D(B∗D) = D(D). Since Dϕ ∈ Xp♥
DB∗ (Proposition 6.2.6), by

Lemma 7.1.3 we find that

χ±(DB∗)e−t[DB∗]/2Dϕ = e−t[DB
∗]/2χ±(DB∗)Dϕ ∈ Ep♥ = Ep′ . (7.27)

To see that e−[B∗D]/2ϕ is in Dp(X), note that

e−[B∗D]/2ϕ ∈ D(B∗D) = D(D),

that
De−[B∗D]/2ϕ = e−[DB∗]/2Dϕ ∈ Xp♥

DB∗ ,

and that
χ±(DB∗)De−[B∗D]/2ϕ = e−t[DB

∗]/2χ±(DB∗)Dϕ ∈ Ep♥

by (7.27).
5Although we did not discuss this in Subsection 5.2.1, this is a standard procedure. The

representation (7.26) is all we need.
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Step 2: Verification and application of the initial limiting arguments.

Lemma 7.3.15. Define the operator

G̃t0 : ϕ 7→ sgn(t0 − t)e−[(t0−t)DB∗]χsgn(t0−t)(DB∗)ϕ.

Let K ⊂ R+,t0 be compact. Then for all k ∈ N, 1K×RnG̃t0 is bounded from Xp♥
DB∗

to Xp♥+k, and this boundedness is uniform in K provided K− > t0 + 1.

Proof. We will prove the result for tent spaces; the Z-space result then follows
by real interpolation because the assumption on p is open in (j(p), θ(p)).

Suppose ϕ ∈ Xp♥
DB∗ and write K = K0 ∪K∞, where K0 ⊂ (0, t0) and K∞ ⊂

(t0,∞). For all x ∈ Rn,

A2(κθ(p)+1−k1K×RnG̃t0(ϕ))(x)2

=
(ˆ

K0

ˆ
B(x,t)

+
ˆ
K∞

ˆ
B(x,t)

)
|tθ(p)+1−kG̃t0(ϕ)(t, y)|2 dy dt

t1+n

=: I0 + I∞.

There exists α > 0 (depending on K0) such that if (t0− τ, y) ∈ (K0×Rn)∩Γ(x),
then (τ, y) ∈ Γα(x) (see Figure 7.4). Thus, using (7.5) and that t0−τ 'K τ when
t0 − τ ∈ K0,

I0 ≤
¨

Γα(x)
1K0(t0 − τ)

∣∣∣(t0 − τ)θ(p)+1−kG̃t0(ϕ)(t0 − τ, y)
∣∣∣2 dy dτ

(t0 − τ)1+n

.K,k

¨
Γα(x)

∣∣∣τ θ(p)+1e−τDB
∗
χ+(DB∗)ϕ(y)

∣∣∣2 dy dτ
τ 1+n

Similarly, there exists β > 0 such that if (t0 + σ, y) ∈ (K1 × Rn) ∩ Γ(x), then
(σ, y) ∈ Γβ(x), and using 2(θ(p) + 1)− n− 1 < 0 we have

I∞ ≤
¨

Γβ(x)
1K∞(t0 + σ)

∣∣∣(t0 + σ)θ(p)+1−keσDB
∗
χ−(DB∗)ϕ(y)

∣∣∣2 dy dσ

(t0 + σ)1+n

≤ (K∞)−2k
−

¨
Γβ(x)

(t0 + σ)2(θ(p)+1)−n−1
∣∣∣eσDB∗χ−(DB∗)ϕ(y)

∣∣∣2 dy dσ
≤ (K∞)−2k

−

¨
Γβ(x)

σ2(θ(p)+1)−n−1
∣∣∣eσDB∗χ−(DB∗)ϕ(y)

∣∣∣2 dy dσ
= (K∞)−2k

−

¨
Γβ(x)

∣∣∣σθ(p)+1eσDB
∗
χ−(DB∗)ϕ(y)

∣∣∣2 dy dσ
σ1+n .
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Figure 7.4: Cones of large aperture, used in Lemma 7.3.15.

Rn

R+

x

t0

K0

K∞

Therefore we can estimate∣∣∣∣∣∣1K×RnG̃t0(ϕ)
∣∣∣∣∣∣
Tp♥+k

. C(K, k)
∣∣∣∣∣∣e−tDB∗χ+(DB∗)ϕ

∣∣∣∣∣∣
Tp♥

+ (K∞)−2k
−

∣∣∣∣∣∣etDB∗χ−(DB∗)ϕ
∣∣∣∣∣∣
Tp♥

. ||ϕ||
Hp♥
DB∗

<∞,

using the semigroup characterisation of the Hp♥,±
DB∗ quasinorm (Theorem 6.1.25),

which is valid since i(p♥) < 2 and θ(p♥) < 0. Note that if K− > t0 + 1 then
I0 = 0, and that the aperture β can remain fixed in this argument, which implies
the claimed uniformity in K since K−2k

− is bounded in K− > t0 + 1.

Corollary 7.3.16. Let ϕ ∈ Dp(X) and k ∈ N. Then 1K×RnDGt0,ϕ ∈ Xp♥+k for
all compact K ⊂ R+,t0, with uniform boundedness in K provided K− > t0 + 1.

Proof. For ϕ ∈ Dp(X) we have Dϕ ∈ Xp♥
DB∗ and DGt0,ϕ = G̃t0(Dϕ), so this

follows from Lemma 7.3.15.

For k ∈ N, whenever F ∈ Xp−k solves (CR)DB we can invoke Corollary 7.3.6
when ϕ ∈ Dp(X), yielding the equalities (7.9) and (7.10) for sufficiently small
ε > 0.

Corollary 7.3.17. Let ϕ ∈ Dp(X) and k ∈ N, and suppose that F ∈ Xp−k solves
(CR)DB. Then

lim
ε→0

ˆ t0+2ε

t0+ε

ˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx dt = 0. (7.28)
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Proof. For ε < 1/2 we have t0 + (2ε)−1 > t0 + 1, and so by Corollary 7.3.16 we
have

1[t0+(2ε)−1,t0+ε−1]×RnDGt0,ϕ ∈ Xp♥+k+1

with uniformly bounded quasinorms. Since F ∈ Xp−k, and since (p − k)′ =
p♥ + k + 1, absolute convergence of the X-space duality integrals implies that
condition (7.7) is satisfied, and also that

ˆ t0+ε−1

t0+(2ε)−1

ˆ
Rn
|〈B∗DGt0,ϕ(t, x), F (t, x)〉| dx dt . 1

for all ε < 1/2. Therefore we can take the limit as ε → 0 of both sides of (7.9)
using dominated convergence to conclude that the right hand side vanishes.

Step 3: Weak semigroup properties of solutions.

Lemma 7.3.18. Suppose that F ∈ Xp−k solves (CR)DB for some k ∈ N. When
t0 > 0, τ ≥ 0, and ϕ ∈ Dp(X), we have

〈B∗Dϕ,F (t0 + τ)〉
Ep♥ = 〈B∗e−τDB∗χ+(DB∗)Dϕ,F (t0)〉

Ep♥ . (7.29)

Proof. We need to rewrite the integrals in (7.28) and (7.10) in terms of duality
of slice spaces. By Proposition 7.1.1, F (t) is in Ep for each t ∈ R+. By Lemma
7.1.3, since Dϕ ∈ Xp♥

DB∗ , we have that B∗DGt0,ϕ(t) is in Ep♥ . Henceˆ
Rn
〈B∗DGt0,ϕ(t, x), F (t, x)〉 dx = 〈B∗DGt0,ϕ(t), F (t)〉

Ep♥

by the slice space duality identification of Proposition 5.1.41. Therefore (7.28)
and (7.10) can be rewritten as

lim
ε→0

ˆ t0+2ε

t0+ε
〈B∗DGt0,ϕ(t), F (t)〉

Ep♥ dt = 0 (7.30)

and

− lim
ε→0

ˆ 2ε

ε

〈B∗DGt0,ϕ(t0− t), F (t0− t)〉Ep♥ dt = lim
ε→0

ˆ 2ε

ε

〈B∗DGt0,ϕ(t), F (t)〉
Ep♥ dt.

(7.31)
We need to evaluate these limits by using continuity of the integrands. By

Proposition 7.1.1, we have F ∈ C∞(R+ : Ep). By the definition of Dp(X), we
have that B∗DGt0,ϕ(t) ∈ Ep♥ for all t ∈ R+,t0 , with

lim
t↘t0

B∗DGt0,ϕ(t) = −B∗Dχ−(B∗D)PR(B∗D)ϕ

= −B∗χ−(DB∗)Dϕ
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in Ep♥ by Corollary 6.1.28. Therefore (7.30) becomes

〈B∗χ−(DB∗)Dϕ,F (t0)〉
Ep♥ = 0. (7.32)

Next, we will prove

〈B∗e−τDB∗χ+(DB∗)Dϕ,F (t0)〉
Ep♥ = 〈B∗χ+(DB∗)Dϕ,F (t0 + τ)〉

Ep♥ . (7.33)

by taking the limit of the left hand side of (7.31) and exploiting an algebraic
property of the right hand side. Summing (7.32) (at t0 + τ) and (7.33) will yield
(7.29) and complete the proof.

For ϕ ∈ Dp(X) and δ ≥ 0, define

Iε,δt0,ϕ :=
ˆ 2ε

ε

〈B∗DGt0,ϕδ(t), F (t)〉
Ep♥ dt

where ϕδ := e−δ[B
∗D]ϕ. By Lemma 7.3.13, ϕδ is in Dp(X), and so we can apply

(7.31) to get

lim
ε→0

Iε,δt0,ϕ = − lim
ε→0

ˆ 2ε

ε

〈B∗DGt0,ϕδ(t0 − t), F (t0 − t)〉Ep♥ dt

= − lim
ε→0

ˆ 2ε

ε

〈B∗e−tDB∗e−δDB∗χ+(DB∗)Dϕ(t), F (t)〉
Ep♥ dt

= −〈B∗e−δDB∗χ+(DB∗)Dϕ(t0), F (t0)〉
Ep♥

using the same argument as in the previous paragraph to establish the final
equality. A simple computation shows that we have

Iε,δt0,ϕ = Iε,0t0+δ,ϕ,

and so we can conclude

〈B∗e−τDB∗χ+(DB∗)Dϕ,F (t0)〉
Ep♥ = − lim

ε→0
Iε,τt0,ϕ

= − lim
ε→0

Iε,0t0+τ,ϕ

= 〈B∗χ+(DB∗)Dϕ,F (t0 + τ)〉
Ep♥ ,

completing the proof.

We can use this lemma, using that Ep ⊂ S ′, to see what happens when we
test against Schwartz functions.
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Corollary 7.3.19. Let F , t0, and τ be as in Lemma 7.3.18, and suppose ϕ ∈ S.
Then

− 〈ϕ, (∂tF )(t0 + τ)〉S = 〈B∗e−τDB∗χ+(DB∗)Dϕ,F (t0)〉
Ep♥ . (7.34)

Proof. By Lemma 7.3.12, S ⊂ Dp(X), so we can apply Lemma 7.3.18 to ϕ. Since
F (t0 + τ) and (∂tF )(t0 + τ) are in Ep, and ϕ and B∗Dϕ are in Ep♥ , we can apply
integration by parts in slice spaces (Proposition 5.1.44) to derive (7.34).

Step 4: A reproducing formula for (∂tF )(t0) in terms of higher deriva-
tives.

Lemma 7.3.20. Let t0 > 0, k ∈ N+, and suppose that F ∈ Xp solves (CR)DB.
Then (∂kt F )(t0) ∈ Xp

D, with∣∣∣∣∣∣(∂kt F )(t0)
∣∣∣∣∣∣

Xp
D

. t−k0 ||F ||Xp . (7.35)

Proof. Suppose ϕ ∈ S. First note that since ∂k−1
t F solves (CR)DB, and is in

Xp−(k−1) by Proposition 7.1.1, Corollary 7.3.19 yields

− 〈ϕ, (∂kt F )(t0/2 + τ)〉S = 〈B∗e−τDB∗χ+(DB∗)Dϕ, (∂k−1
t F )(t0/2)〉

Ep♥ . (7.36)

Applying this with τ = t0/2 and using the slice space estimates of Lemma 7.1.3
and Proposition 7.1.1, slice space duality, and p♥ ∈ I(X, DB∗), we have∣∣∣∣∣

ˆ
Rn
〈ϕ(x), ∂kt F (t0)(x)〉 dx

∣∣∣∣∣
≤
∣∣∣∣∣∣B∗e−t0DB∗/2χ+(DB∗)Dϕ

∣∣∣∣∣∣
Ep♥ (t0/2)

∣∣∣∣∣∣(∂k−1
t F )(t0/2)

∣∣∣∣∣∣
Ep+1(t0/2)

. ||Dϕ||
Xp♥
DB∗

t−k0

∣∣∣∣∣∣(∂k−1
t F )(t0/2)

∣∣∣∣∣∣
Ep−(k−1)(t0)

. ||Dϕ||
Xp♥
D

t−k0

∣∣∣∣∣∣∂k−1
t F

∣∣∣∣∣∣
Xp−(k−1)

. ||ϕ||Xp′ t
−k
0 ||F ||Xp .

Since ϕ was arbitrary, this implies that (∂kt F )(t0) ∈ (Xp′)′ = Xp with the norm
estimate (7.35). Furthermore, since ∂kt F solves (CR)DB, each (∂kt F )(t0) is in
R(DB) = R(D), which implies membership in Xp

D.

We recall the following elementary lemma (see [15, Lemma 9.2]).

Lemma 7.3.21. Suppose k ∈ N and g ∈ Ck(R+ : C), with tjg(j)(t) → 0 as
t→∞ for all integers 0 ≤ j ≤ k − 1. Then for all t > 0 we have

g(t) = (−1)k
(k − 1)!

ˆ ∞
t

g(k)(τ)(τ − t)k−1 dτ.
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Corollary 7.3.22. Suppose that F ∈ Xp solves (CR)DB. Then for all t0 > 0
and ϕ ∈ S we have

〈ϕ, (∂tF )(t0)〉S = (−1)k
(k − 1)!

ˆ ∞
t0

〈ϕ, (∂k+1
t F )(t)〉Ep′ (t− t0)k−1 dt.

Proof. By Lemma 7.3.20 we have that the function t0 7→ (∂tF )(t0) is in C∞(R+ :
Xp
D). Therefore for all ϕ ∈ S the function gϕ defined by

gϕ(t0) := 〈ϕ, (∂tF )(t0)〉S

is in C∞(R+ : C), and for k ∈ N+ we have

g(k)
ϕ (t0) = 〈ϕ, (∂k+1

t F )(t0)〉S = 〈ϕ, (∂k+1
t F )(t0)〉Ep′ .

Furthermore, by the same lemma, we have

|tk0gϕ(t0)| = tk0

∣∣∣∣〈ϕ, (∂tF )(t0)〉Xp′
D

∣∣∣∣
.ϕ,F t

−1
0 ,

so the hypotheses of Lemma 7.3.21 are satisfied, and the result follows.

Step 5: Construction of associated ‘nice’ solutions.
In this step of the proof, given a solution F ∈ Xp of (CR)DB, we will construct

distributions modulo polynomials F̃ (t0) ∈ Xp
D which satisfy the properties we

want to show for F (t0). In the remaining steps we will show that F̃ (t0) = F (t0),
which will complete the proof.

Lemma 7.3.23. Suppose F ∈ Xp solves (CR)DB. Then for all t0 ∈ [0,∞) and
for sufficiently large N ∈ N we have∣∣∣∣∣∣(t, y) 7→ tN(∂Nt F )(t0 + t, y)

∣∣∣∣∣∣
Xp

. ||F ||Xp .

Proof. This is an immediate corollary of Propositions 5.1.36 and 7.1.1.

Let F ∈ Xp solve (CR)DB. For N ∈ N large enough that Lemma 7.3.23
applies, define ζ ∈ Ψ∞1 by

ζ(z) := cNze
−[z]/2

where cN = (−1)N+1/N !. For k ∈ N define χk := 1[k−1,k]×B(0,k), and for all t0 ≥ 0
define

F̃k(t0) := Sζ,DB
[
t 7→ χkt

N(∂Nt F )
(
t0 + t

2

)]
. (7.37)
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By Lemma 7.3.23 we have [t 7→ χkt
N∂Nt F

(
t0 + t

2

)
] ∈ Xp∩X2, and so F̃k(t0) is a

well-defined element of Xp
DB. Furthermore, since ζ ∈ Ψ0

+, Proposition 6.1.6 and
Lemma 7.3.23 tell us that

∣∣∣∣∣∣F̃k(t0)
∣∣∣∣∣∣
Xp
DB

.
∣∣∣∣∣∣∣∣t 7→ χkt

N(∂Nt F )
(
t0 + t

2

)∣∣∣∣∣∣∣∣
Xp

. ||F ||Xp .

Since the functions [t 7→ χkt
N(∂Nt F )

(
t0 + t

2

)
] converge to [t 7→ tN(∂Nt F )

(
t0 + t

2

)
]

in Xp as k → ∞, given a completion6 Xp
DB of Xp

DB, we get an element F̃ (t0) ∈
Xp
DB defined by

F̃t0 := Sζ,DB
[
t 7→ tN(∂Nt F )

(
t0 + t

2

)]
and satisfying ∣∣∣∣∣∣F̃ (t0)

∣∣∣∣∣∣
Xp
DB

. ||F ||Xp . (7.38)

Since p♥ ∈ I(X, DB∗), we can identify Xp
D as a completion of Xp

DB, and so in
this case each F̃ (t0) ∈ Xp

D is a distribution modulo polynomials.

Lemma 7.3.24. Let t0 ≥ 0. Suppose F ∈ Xp solves (CR)DB, let Xp
DB be

a completion of Xp
DB, and define F̃ (t0) ∈ Xp

DB as in the previous paragraphs.
Suppose also that φ ∈ Xp′

B∗D ∩ D(B∗D). Then we have

〈φ, F̃ (t0)〉Xp′
B∗D

= −cN
ˆ ∞

0

〈
tB∗e−

t
2 [DB∗]Dφ, tN(∂Nt F )

(
t0 + t

2

)〉
Ep′

dt

t
(7.39)

Proof. First we show the the Ep′ duality pairing (7.39) makes sense. Since φ ∈
Xp′
B∗D ∩ D(B∗D), Lemma 7.3.14 yields e−t[DB∗]/2Dφ ∈ Ep′ . Since each tB∗ is a

bounded operator on Ep′ (not uniformly in t of course) we have tB∗e−t[DB∗]/2Dφ ∈
Ep′ . On the other hand, since t 7→ (∂Nt F )(t0+t/2) solves (CR)DB, by Proposition
7.1.1 and Lemma 7.3.23 we have

∣∣∣∣∣∣(∂Nt F )(t0 + t/2)
∣∣∣∣∣∣
Ep−N (t)

.
∣∣∣∣∣∣t 7→ (∂Nt F )(t0 + t/2)

∣∣∣∣∣∣
Xp−N

. ||F ||Xp

for all t > 0. Therefore the slice space dual pairing in (7.39) is meaningful.

6Recall that when p is infinite we always use weak-star completions instead of ordinary
completions.
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Now write

〈φ, F̃ (t0)〉Xp′
B∗D

= lim
k→∞
〈φ, F̃k(t0)〉Xp′

B∗D

= lim
k→∞
〈Qζ̃,B∗Dφ, [t 7→ χkt

N(∂Nt F )(t0 + t/2)]〉Xp

= 〈Q
ζ̃,B∗D

φ, [t 7→ tN(∂Nt F )(t0 + t/2)]〉Xp

= −cN
¨

R1+n
+

(
t(B∗De−t[B∗D]/2φ)(x), tN(∂Nt F )(t0 + t/2, x)

)
dx

dt

t

= −cN
ˆ ∞

0
〈tB∗e−t[DB∗]/2Dφ, tN(∂Nt F )(t0 + t/2)〉Ep′

dt

t

using ζ̃ = ζ and the slice space containments from the previous paragraph.

Now we will show that the distributions (modulo polynomials) (F̃ (t0))t0≥0 are
in fact given by the Cauchy operator applied to F̃ (0).

Proposition 7.3.25. Let F ∈ Xp solve (CR)DB, fix a completion Xp
DB of Xp

DB,
and define F̃ as above. Then for all t0 ≥ 0 we have

F̃ (t0) = e−t0[DB]χ+(DB)F̃ (0),

In particular, F̃ (0) ∈ Xp,+
DB , and so F̃ = C+

DB(F̃ (0)).

Proof. Since F̃ (t0) ∈ Xp
DB and since Xp′

B∗D∩D(B∗D) is dense in Xp′
B∗D (Corollary

6.1.7 and density of D(B∗D) in X2
B∗D), it suffices to test against φ ∈ Xp′

B∗D ∩
D(B∗D). For all such φ write

〈φ, e−t0[DB]χ+(DB)F̃ (0)〉Xp′
B∗D

= 〈e−t0[B∗D]χ+(B∗D)φ, F̃ (0)〉Xp′
B∗D

= −cN
ˆ ∞

0

〈
tB∗e−

t
2 [DB∗]D

(
e−t0[B∗D]χ+(B∗D)φ

)
, tN(∂Nt F )(t/2)

〉
Ep′

dt

t
(7.40)

= −cN
ˆ ∞

0

〈
tB∗e−t0[DB∗]χ+(DB∗)D

(
e−

t
2 [B∗D]φ

)
, tN(∂Nt F )(t/2)

〉
Ep′

dt

t

= −cN
ˆ ∞

0

〈
tB∗D

(
e−

t
2 [B∗D]φ

)
, tN(∂Nt F )

(
t0 + t

2

)〉
Ep′

dt

t
(7.41)

= −cN
ˆ ∞

0

〈
tB∗e−

t
2 [DB∗]Dφ, tN(∂Nt F )

(
t0 + t

2

)〉
Ep′

dt

t

= 〈φ, F̃ (t0)〉Xp′
B∗D

(7.42)

In (7.40) we used that e−t0[B∗D]χ+(B∗D) maps Xp′
B∗D ∩ D(B∗D) into itself, and

the representation (7.39). In (7.41) we used Lemma 7.3.18, which is valid since
e−t[B

∗D]/2φ ∈ Dp(X) (Lemma 7.3.14) and since [t 7→ (∂tF )(t/2)] ∈ Xp−1 solves
(CR)DB. We use the representation (7.39) once more in the last line.
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This immediately implies the following corollary.

Corollary 7.3.26. Let F ∈ Xp solve (CR)DB. Then F̃ (0) ∈ Xp,+
D , F̃ is equal to

the Cauchy extension C+
DB(F̃ (0)), and F̃ ∈ Xp.

Proof. All we need to show is that F̃ is in Xp. This follows from Theorem
6.2.12.

Step 6: Equality of ∂tF and ∂tF̃ .

By Corollary 7.3.26 and Proposition 6.1.24, for F ∈ Xp which solves (CR)DB, the
function t0 7→ F̃ (t0) is in C∞(R+ : Xp

D). Therefore we can consider (∂tF̃ )(t0) ∈
Xp
D as a distribution modulo polynomials.

Lemma 7.3.27. Let F ∈ Xp solve (CR)DB. Then for all t0 > 0 we have
(∂tF )(t0) = (∂tF̃ )(t0) in Z ′(Rn).

Proof. Fix ϕ ∈ Z.7 For all k ∈ N we have already computed (using that every-
thing is in L2)

〈ϕ, F̃k(t0)〉Z

= −cN
¨

R1+n
+

(
t(B∗e−t[DB∗]/2Dϕ)(x), χktN(∂Nt F )(t0 + t/2, x)

)
dx

dt

t
. (7.43)

Since ϕ ∈ Z we have Dϕ ∈ Xp′
D , so for each t > 0 we may apply the (extended

operator) e−t[DB∗]/2 to Dϕ. We then have∣∣∣∣∣∣t 7→ tB∗e−t[DB
∗]/2Dϕ

∣∣∣∣∣∣
Xp′

=
∣∣∣∣∣∣t 7→ B∗e−t[DB

∗]/2Dϕ
∣∣∣∣∣∣
Xp♥

. ||Dϕ||
Xp♥
D

(7.44)

' ||ϕ||Xp′ <∞,

where (7.44) follows from Proposition 6.1.3 since [z 7→ ze−[z]/2] ∈ Ψ(Xp♥
D ) (here

we use i(p♥) < 2 and θ(p♥) < 0). Since [t 7→ tN∂Nt F (t0 + t/2)] ∈ Xp (Lemma
7.3.23), the integral (7.43) is uniformly bounded in k and so we can take the limit

〈ϕ, F̃ (t0)〉Z = lim
k→∞
〈ϕ, F̃k(t0)〉Z

= −cN
¨

R1+n
+

(
t(B∗e−t[DB∗]/2Dϕ)(x), tN(∂Nt F )(t0 + t/2, x)

)
dx

dt

t

7Recall that Z(Rn) is the space of Schwartz functions f with Dαf(0) = 0 for every multi-
index α.
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by dominated convergence. Using dominated convergence again, we can take the
derivative:

〈ϕ, (∂tF̃ )(t0)〉Z
= ∂t〈ϕ, F̃ (t0)〉Z

= −cN
¨

R1+n
+

(
t(B∗e−t[DB∗]/2Dϕ)(x), tN(∂N+1

t F )(t0 + t/2, x)
)
dx

dt

t

= −cN
ˆ ∞

0

〈
tB∗e−t[DB

∗]/2Dϕ, tN(∂N+1
t F )(t0 + t/2)

〉
Ep′

dt

t

using that ϕ ∈ Dp(X) (Lemma 7.3.12) to conclude that the slice space duality
pairing is meaningful as in the proof of Lemma 7.3.24.

Now we rearrange:〈
tB∗e−t[DB

∗]/2Dϕ, tN(∂N+1
t F )(t0 + t/2)

〉
Ep′

=
〈
tB∗D

(
e−t[B

∗D]/2ϕ
)
, tN(∂N+1

t F )(t0 + t/2)
〉
Ep′

(7.45)

=
〈
tB∗χ+(DB∗)De−t[B∗D]/2ϕ, tN(∂N+1

t F )(t0 + t/2)
〉
Ep′

(7.46)

= tN+1
〈
B∗e−t[DB

∗]/2χ+(DB∗)Dϕ, (∂N+1
t F )(t0 + t/2)

〉
Ep′

(7.47)

= tN+1
〈
B∗Dϕ, (∂N+1

t F )(t0 + t)
〉
Ep′

(7.48)

= −tN+1
〈
ϕ, (∂N+2

t F )(t0 + t)
〉
Ep′

. (7.49)

The first line (7.45) uses that ϕ ∈ D(D) = D(B∗D), (7.46) uses (7.32) and
the fact that e−t[B∗D]/2ϕ is in Dp(X) (Lemma 7.3.13), (7.47) is just similarity of
functional calculi and rearrangement, (7.48) uses the weak semigroup property
(7.29), and (7.49) finishes with integration by parts in slice spaces (Proposition
5.1.44) and (CR)DB.

Therefore we have

〈ϕ, (∂tF̃ )(t0)〉Z = cN

ˆ ∞
0

〈
ϕ, (∂N+2

t F )(t0 + t)
〉
Ep′

tN+1 dt

t

= (−1)N+1

N !

ˆ ∞
t0

〈
ϕ, (∂N+2

t F )(t)
〉
Ep′

(t− t0)N dt.

Finally, applying Corollary 7.3.22 with k = N + 1, we get

〈ϕ, (∂tF )(t0)〉Z = 〈ϕ, (∂tF̃ )(t0)〉Z

for all ϕ ∈ Z and all t0 > 0. Therefore we have (∂tF )(t0) = (∂tF̃ )(t0) in Z ′ for
all t0 > 0 as claimed.
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Step 7: Completing the proof.

Lemma 7.3.28. Let F ∈ Xp solve (CR)DB with limt→∞ F (t)‖ = 0 in Z ′(Rn :
Cnm). Then F = F̃ .

Proof. By Lemma 7.3.27 we have ∂tF = ∂tF̃ in Z ′, so there exists G ∈ Z ′

such that F (t0) = G + F̃ (t0) for all t0 ∈ R+. Since limt0→∞ F̃ (t0) = 0 in Xp
D

(Proposition 6.1.24, using the weak-star topology when p is infinite) and hence
also in Z ′, we find that G‖ = 0. Following the argument of [15, Step 5, page
50], we find that G = βa modulo polynomials, where a is invertible in L∞ and
β ∈ Cm. To complete the proof it suffices to show that β = 0.

Note that the constant function [t 7→ G = F (t)− F̃ (t)] is in Xp. If p is finite,
then G ∈ Ep (since [t 7→ G] solves (CR)DB), and this forces β = 0. If p is infinite,
then the argument completing the proof of [15, Case q ≤ 1, Theorem 1.3] shows
that if β 6= 0 then [t 7→ G] /∈ T∞−1;α̃ for all α̃ ∈ [0, 1). Since θ(p) > −1 we have

G ∈ Xp ↪→ T∞−1;1+α(p)+θ(p),

and since α(p)+θ(p) ∈ [−1, 0) (this follows from p ∈ Imax), we must have β = 0.
This completes the proof.

Therefore, by Corollary 7.3.26, under the assumptions of Theorem 7.3.2, we
have that F = F̃ = C+

DB(F̃ (0)), with F̃ (0) ∈ Xp,+
D such that

∣∣∣∣∣∣F̃ (0)
∣∣∣∣∣∣

Xp,+
D

.

||F ||Xp (by (7.38)). Furthermore, if f ∈ Xp,+
DB and F = C+

DBf , then by Proposi-
tion 6.1.24 we have

f = lim
t→0

C+
DBF (t) = F̃ (0)

with limit in Xp
DB. This completes the proof of Theorem 7.3.2.

7.4 Applications to boundary value problems

7.4.1 Characterisation of well-posedness and corollaries

First let us put the boundary value problems given in the introduction (Subsection
4.1.1) in a more convenient form.

Fix m ∈ N and let p be an exponent. Consider the spaces (Xp ∩DZ ′)(Rn :
Cm(1+n)), using the notation of Subsection 6.2.1. Making use of the natural
splitting

Xp(Rn : Cm(1+n)) = Xp(Rn : Cm)⊕Xp(Rn : Cmn)
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and the corresponding splitting for Z ′(Rn : Cm(1+n)), we can write

(Xp ∩DZ ′)(Rn : Cm(1+n)) = Xp(Rn : Cm)⊕ (Xp(Rn : Cmn) ∩∇‖Z ′(Rn : Cmn))
=: Xp

⊥ ⊕Xp
‖ .

In particular, if p ∈ Imax, we can make the identification

Xp
D(Rn : Cm(1+n)) ' Xp

⊥ ⊕Xp
‖

(see Theorem 6.2.1).
For p ∈ Imax with θ(p) < 0, define

X̃p :=
{
F ∈ Xp : lim

t→∞
F (t)‖ = 0 in Z ′(Rn)

}
and when p ∈ Imax and θ(p) = 0 (so p = (p, 0) with p ∈ (n/(n+ 1),∞)) define

X̃p :=
{
F : N∗(F ) ∈ Li(p)

}
where N∗(F ) is defined in (4.4).8 We set ||F ||

X̃p to be ||F ||Xp or ||N∗F ||Li(p)

respectively.

Definition 7.4.1. For p ∈ Imax we define the Regularity problem

(RX)p
A :


LAu = 0 in R1+n

+ ,

limt→0∇‖u(t, ·) = f ∈ Xp
‖ ,

||∇u||
X̃p . ||f ||Xp ,

and the Neumann problem

(NX)p
A :


LAu = 0 in R1+n

+ ,

limt→0 ∂νAu(t, ·) = f ∈ Xp
⊥,

||∇u||
X̃p . ||f ||Xp .

By limt→0∇‖u(t, ·) = f ∈ Xp
‖ we mean that f ∈ Xp

‖ and that the limit is in the
Xp
‖ topology, and likewise for the limit in the Neumann problem. We say that

such a problem is well-posed if for all boundary data f there exists a unique u
(up to additive constant) satisfying the conditions of the problem.

We will denote these problems simultaneously by (PX)p
A, with P standing for

either R or N .
8In the notation of Huang [51], X̃(p,0) = T p,2∞ .
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Remark 7.4.2. The boundary condition in (RX)p
A is equivalent to the Dirichlet

condition
lim
t→0

u(t, ·) = g ∈ Xp+1
⊥

where ∇‖g = f , since ∇‖ is an isomorphism from Xp+1
⊥ onto Xp

‖ . Therefore
(RX)p

A could be thought of as a Dirichlet problem (DX)p+1
A .

Remark 7.4.3. The problems (RX)p
A and (NX)p

A include all Regularity and Neu-
mann problems introduced in Subsection 4.1.1. The definition above is much
more concise (but, initially, much less clear).

Now we will use Theorems 7.3.1 and 7.3.2 to characterise the well-posedness of
(RX)p

A and (NX)p
A. Let N⊥ and N‖ denote the projections from Xp

D(Rn : Cm(1+n))
onto Xp

⊥ and Xp
‖ respectively. If p ∈ I(X, DB) or p♥ ∈ I(X, DB∗), then we

can realise Xp,+
DB(Rn : Cm(1+n)) as a subset of Xp

D(Rn : Cm(1+n)), and via this
identification we define

Np
X,DB,‖ : Xp,+

DB → Xp
‖ and Np

X,DB,⊥ : Xp,+
DB → Xp

⊥

Note again that the condition p♥ ∈ I(X, DB∗) is equivalent to p ∈ I(X, DB)
when i(p) ∈ (1,∞).

Theorem 7.4.4 (Characterisation of well-posedness). Let B = Â. Suppose p
satisfies  p ∈ I(X, DB) if i(p) ≤ 2,

p♥ ∈ I(X, DB∗) if i(p) > 2.

Then (RX)p
A (resp. (NX)p

A) is well-posed if and only if Np
X,DB,‖ (resp. N

p
X,DB,⊥)

is an isomorphism.

Proof. The results for θ(p) = 0 and θ(p) = −1 correspond to [15, Theorems 1.5
and 1.6], so we need only consider θ(p) ∈ (−1, 0). Since ∇A =

[
∂νA ,∇‖

]
, The

boundary conditions for (RX)p
A and (NX)p

A can be rewritten as

N‖

(
lim
t→0
∇Au(t, ·)

)
= f ∈ Xp

‖ and

N⊥

(
lim
t→0
∇Au(t, ·)

)
= f ∈ Xp

⊥

respectively. By Theorem 4.1.3, solutions u to LAu = 0 are in bijective corre-
spondence (modulo additive constant) to solutions F to (CR)DB, with F = ∇Au.
Furthermore, by Theorems 7.3.1 and 7.3.2 and by the assumptions of this theo-
rem, every such F ∈ X̃p is given by F = C+

DBF0 for a unique F0 ∈ Xp,+
DB (and so
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F (t) ∈ Xp,+
DB for all t), every such F0 determines a solution F , and by continuity

of the semigroup on Xp,+
DB (Proposition 6.1.24)

F0 = lim
t→0
∇Au(t, ·).

The result follows.

Define the energy exponent e = (2,−1/2). For all A, the Lax–Milgram theo-
rem guarantees well-posedness of the problems (RX)e

A and (NX)e
A (see [12, The-

orems 3.2 and 3.3]). We say that a problem (PX)p
A is compatibly well-posed if

it is well-posed and if for all boundary data f ∈ Xp
• ∩ Xe

• (where • is either
‖ or ⊥ depending on the choice of boundary condition), the solution to (PX)e

A

with boundary data f (the energy solution) coincides with the solution to (PX)p
A

with boundary data f . If p satisfies the assumptions of Theorem 7.4.4, then this
theorem says that (PX)p

A is compatibly well-posed if and only if Np
X,DB,• is an

isomorphism and (Np
X,DB,•)−1 = (Ne

X,DB,•)−1 on Xp
• ∩Xe

•.
For finite exponents we can interpolate compatible well-posedness; compati-

bility is required in order to interpolate invertibility.

Theorem 7.4.5 (Interpolation of compatible well-posedness). Fix θ ∈ (0, 1), and
suppose p and q are finite exponents satisfying the assumptions of Theorem 7.4.4.
If (PX)p

A and (PX)q
A are compatibly well-posed, then (PX)[p,q]θ

A is compatibly well-
posed. Furthermore, if θ(p) 6= θ(q) and X = H, then (PB)[p,q]θ

A is also compatibly
well-posed.

Proof. We use interpolation result for smoothness spaces, Theorem 5.1.52. By
the previous discussion, we have

(Np
X,DB,•)−1 = (Nq

X,DB,•)−1 = (Ne
X,DB,•)−1

on the intersection Xp
• ∩Xq

• ∩Xe
•. Since this intersection is dense in Xp

• and Xq
•

(here is where we use finiteness of p and q), we have a well-defined operator

N : Xp
• + Xq

• → Xp,+
DB + Xq,+

DB

which restricts to (Np
X,DB,•)−1 and (Nq

X,DB,•)−1 on Xp
• and Xq

• respectively. By
complex interpolation, N restricts to a bounded operator Nθ : X[p,q]θ

• → X[p,q]θ,+
DB .

Since Nθ is equal to (Ne
X,DB,•)−1 on X[p,q]θ

• ∩Xe
•, and since N [p,q]θ

X,DB,• is equal to
Ne

X,DB,• on Xp,+
DB ∩ Xe,+

DB, we find that Nθ is the inverse of N [p,q]θ
X,DB,•. Therefore

N
[p,q]θ
X,DB,• is an isomorphism, and since [p,q]θ satisfies the assumptions of Theorem
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7.4.4 (by Proposition 6.2.9), (PX)[p,q]θ
A is well-posed. Furthermore, since Nθ =

(Ne
X,DB,•)−1 on X[p,q]θ

• ∩Xe
•, (PX)[p,q]θ

A is compatibly well-posed. When X = H
and θ(p) 6= θ(q), applying real interpolation with the same argument yields
compatible well-posedness of (PB)[p,q]θ

A .

Although well-posedness without compatibility cannot be interpolated, it can
be extrapolated by making use of a theorem of Šnĕıberg [83].9 This extrapola-
tion procedure also extrapolates compatible well-posedness, and works for infinite
exponents (excluding the BMO-Sobolev range of spaces).

Theorem 7.4.6 (Extrapolation of well-posedness). Let B = Â, and let p satisfy p ∈ I(X, DB)o i(p) ≤ 2
p♥ ∈ I(X, DB∗)o i(p) > 2

(note the appearance of the interior of the identification regions), and if X = H
then further assume that j(p) 6= 0. Suppose also that (PX)p

A is (compatibly) well-
posed. Then there exists a (j, θ)-neighbourhood Op of p such that for all q ∈ Op,
(PX)q

A is (compatibly) well-posed.

The restriction j(p) 6= 0 for X = H rules out BMO-Sobolev spaces, which are
not in the interior of any of our complex interpolation scales. Note that when
p ∈ (1,∞), p♥ ∈ I(X, DB∗)o is equivalent to p ∈ I(X, DB)o.

Proof. We will prove the result for i(p) ∈ (1,∞) as the proof for general expo-
nents follows the same argument.

Let • denote either ⊥ or ‖ as before. By Theorem 7.4.4, Np
X,DB,• : Xp,+

DB → Xp
•

is an isomorphism. Let Bp be a ball in the (j, θ)-plane centred at p such that
Bp ⊂ I(X, DB). Fix r ∈ Bp. Then we have

Xp,+
DB = [X[p,r]−1,+

DB ,Xr,+
DB, ]1/2

since p = [[p, r]−1, r]1/2. Since the spaces Xp
• form a complex interpolation scale,10

by the extrapolation theorem of Šnĕıberg,11 there exists ε > 0 such that

N
[p,r]ν
X,DB,• : X[p,r]ν ,+

DB → X[p,r]ν
• is an isomorphism for all ν ∈ (−ε, ε).

9This was extended to quasi-Banach spaces by Kalton and Mitrea [58, Theorem 2.7], and
elaborated upon by Kalton, Mayboroda, and Mitrea [57, Theorem 8.1].

10This is immediate for Xp
⊥, and for Xp

‖ this is because Xp
‖ is the image of Xp(Rn : Cm(1+n))

under the retraction N‖PD.
11See [58, Theorem 2.7] for a reference incorporating both quasi-Banach spaces and the

English language.
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Furthermore, inspection of the Kalton–Mitrea proof of this result shows that ε is
independent of r. Therefore there exists a ball Op ⊂ Bp centred at p such that

Nq
X,DB,• : Xq,+

DB → Xq
• is an isomorphism for all q ∈ Op.

In addition, the inverses of these maps are consistent ([57, Theorem 8.1]), and so
if the inverse of Np

X,DB,• is consistent with that of Ne
X,DB,• (i.e. when (PX)p

A is
compatibly well-posed) then this also holds for all q ∈ Op. By Theorem 7.4.4,
this completes the proof.

Remark 7.4.7. Note that this proof also shows that if (PX)p
A is well-posed but not

compatibly well-posed, then the same is true for (PX)q
A for nearby q (the inverses

of Nq
X,DB,• are consistent, so they are either all consistent with Ne

X,DB,• or all not
consistent with Ne

X,DB,•). Therefore, staying within the range of exponents for
which Theorem 7.4.4 holds, the set of p such that (PX)p

A is compatibly well-posed
is a connected component of the set of p such that (PX)p

A is well-posed.

Now we present a ♥-duality principle for well-posedness.

Theorem 7.4.8 (♥-duality of well-posedness). Let B = Â, and suppose that p ∈
I(X, DB). If (PX)p

A is (compatibly) well-posed, then (PX)p♥
A∗ is also (compatibly)

well-posed.

Of course, if i(p) ∈ (1,∞), then this statement is an equivalence. We point
out the case where p = (1, s) with s ∈ (−1, 0]: in this case the result says that
well-posedness of a problem with coefficients A and boundary data in the Hardy–
Sobolev space Ḣ1

s (resp. the Besov space Ḃ1,1
s ) implies well-posedness of the

corresponding problem for A∗ with boundary data in the image of BMO–Sobolev
space ˙BMO−s (resp. the Hölder space Λ̇−s) under D.

Proof. We will be sketchy because all the important details of this argument are
already done by Auscher, Mourgoglou, and Stahlhut (see [16, §12.2] and [15,
§13]). Recall from Remark 6.2.11 that Â∗ = NB∗N =: B̃. When p is finite, the
pairing

〈f, g〉NXp
DB

:= 〈f,Ng〉Xp
DB

a duality pairing between Xp
DB and Xp′

B̃D
. We have that ||Dg||

Xp♥
DB̃

' ||g||Xp′
B̃D

whenever g ∈ D(D) ∩ Xp′
B̃D

(Proposition 6.2.6), and so the pairing

〈f, g〉♥Xp
DB

:= 〈f,ND−1g〉Xp
DB

(7.50)
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is a duality pairing between Xp
DB and R(D) ∩ Xp♥

DB̃
. Since p ∈ I(X, DB), we

can identify Xp
D = Xp

DB and Xp♥
D = Xp♥

DB̃
as completions of Xp

DB and Xp♥
DB̃

respectively (using a simple modification of Proposition 6.2.7 to make the second
identification), and by density the pairing (7.50) extends to a duality pairing
between Xp

DB and Xp♥
DB̃

. As in the proof of [15, Lemma 13.3], this pairing realises
Xp♥,∓
DB̃

as the dual of Xp,±
DB , Xp♥

⊥ as the dual of Xp
‖ , and Xp♥

‖ as the dual of
Xp
⊥. The remainder of the argument precisely follows the proof of [15, Theorem

1.6].

7.4.2 The regularity problem for real coefficient scalar
equations

The results above show that from compatible well-posedness of a boundary value
problem for an exponent p ∈ I(X, DB) with B = Â, we may deduce compatible
well-posedness for a larger range of exponents by ♥-duality and interpolation. As
an application of this principle we consider the regularity problems (RX)p

A in the
real scalar case.

Suppose that m = 1 (so that LAu = 0 is a single equation rather than a
system) and that the entries of A are real. In this setting, there exists a number
α ∈ (0, 1] such that for every Euclidean ball B = B(X0, 2r) in R1+n

+ and every
solution u to LAu = 0 in B, we have

|u(X)− u(X ′)| .
(
|X −X ′|

r

)α (̂ˆ
B

|u|2
)1/2

(7.51)

for all X,X ′ in the smaller ball B(X0, r). In this case say that the coefficients A
satisfy the De Giorgi–Nash–Moser condition of exponent α. The adjoint matrix
A∗ will also satisfy a De Giorgi–Nash–Moser condition of (possibly different)
exponent α∗.

Auscher and Stahlhut [16, Corollary 13.3] show that in this case12 we have
(

n

n+ α
, p+(DB)

)
⊂ I0(H, DB),(

n

n+ α∗
, p+(DB̃)

)
⊂ I0(H, DB̃),

where B̃ = Â∗ (note that B̃ 6= B∗) and where p+(DB), p+(DB̃) > 2. Therefore

12In fact, a somewhat weaker assumption is needed there.
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Figure 7.5: Exponents p ∈ I(H, DB), when m = 1 and A is real, with B = Â.

1
2

1 n+1
n

j(p)
0

θ(p)

0

−1

1/p+(DB) n+α
n

1/p+(DB̃)′

xA

by ♥-duality (see Proposition 6.2.7 and Remark 6.2.11), we have

(p+(DB̃)′,∞) ⊂ I−1(H, DB),
(p+(DB)′,∞) ⊂ I−1(H, DB̃).

By interpolation (Proposition 6.2.9) we then have that I(H, DB) contains the
region pictured in Figure 7.5, and I(B, DB) contains the interior of that region.
The point xA here is defined as the pictured intersection, which is a function of
n, α, and p+(DB̃) that we need not compute explicitly.

There is also a corresponding diagram for B̃ that we have not pictured, in-
cluding a corresponding exponent xA∗ . By applying ♥-duality to the exponents
p ∈ I(H, DB̃) with i(p) ∈ (1, 2), and another application of interpolation, we
can increase these ranges to that pictured in Figure 7.6.

It has been shown that there exist pR(A) > 1 (possibly small) and 0 < α] ≤
min(α, α∗) such that the Regularity problem (RH)(p,0)

A is compatibly well-posed
for all p ∈ (n/(n + α]), pR(A)], and likewise for A∗ (with the same α]).13 By
the results of the previous paragraph, we have (p, 0) ∈ I0(H, DB) ∩ I0(H, DB̃)
for all such p,14 and so we may apply ♥-duality and interpolation as in the

13The p0 endpoint of this result is due to Kenig and Rule in dimension n+1 = 2 [62, Theorem
1.4] and Hofmann, Kenig, Mayboroda, and Pipher in dimension n + 1 ≥ 3 [46, Corollary 1.2].
The other endpoint is an extrapolation result of Auscher and Mourgoglou [14, §10.1].

14It is possible that p > p+(DB) or p > p+(DB̃), in which case we have to restrict to small
p. In general p is small, so this is not a serious loss of generality.
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Figure 7.6: More exponents p ∈ I(H, DB), when m = 1 and A is real, with
B = Â. The dark shaded region corresponds to Figure 7.5.
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previous argument to deduce compatible well-posedness of (RH)p
A for p in the

region pictured in Figure 7.7, and of (RB)p
A in the interior of this region.15

We can expand this region slightly for Besov spaces: applying ♥-duality to
compatible well-posedness of (RB)p

A∗ for p in the open triangle with vertices yA∗ ,
(n+ α]/n, 0), and (1, 0), we find that (RB)(∞,α;0)

A is compatibly well-posed for all
α ∈ (−1,−1 − α]). Therefore (after another iteration of interpolation) we have
well-posedness of (RB)p

A for all p in the shaded region of Figure 7.8. This is the
same region obtained by Barton and Mayboroda for compatible well-posedness
of (RB)p

A in this setting [21, Figure 3.5].16 To recover the result of [21, Corollary
3.24], one need only apply Lemma 7.2.1 (which is valid for this region of p, see
Figure 7.2) to remove the decay assumption at infinity from (RB)p

A, and the
trace theorem [21, Theorem 6.3] to replace our boundary condition with a trace
condition.

In the case that A is symmetric in addition to the above assumptions, then
results of Kenig and Pipher [61] imply that we have the additional information

15We can also deduce results for BMO-Sobolev spaces, which correspond to the unpictured
j(p) = 0 range.

16The only difference is in the light shaded ‘region of applicability’: ours depends on the
Auscher–Stahlhut exponent p+(DB), while that in Barton–Mayboroda is in terms of the expo-
nent appearing in Meyers’ theorem [75, Theorem 2] (see also [21, Lemma 2.12]). It is not clear
whether there is any relationship between these exponents.
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Figure 7.7: Exponents p for which (RH)p
A is compatibly well-posed (the dark

shaded region). The light shaded region is from Figure 7.6.
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pR(A) = pR(A∗) > 2, and regions of compatible well-posedness of (RX)p
A can

be expanded accordingly. Furthermore, in this case the corresponding Neumann
problems (NX)p

A are well-posed for the same range of p by repeating the argu-
ments above (starting from the information given by [61]).

7.4.3 Additional boundary behaviour of solutions

It is possible to establish the following boundary behaviour of solutions to LAu =
0.

Theorem 7.4.9. Let B = Â and let p be an exponent with θ(p) ∈ (−1, 0). Let
u solve LAu = 0, with ∇Au ∈ X̃p.

(i) Suppose p is finite and p ∈ I(X, DB). Then there exists v ∈ Xp+1 such
that

lim
R→0

ˆ̂
Ω(R,x)

u(τ, ξ) dξ dτ = v(x) a.e. x ∈ Rn,

with ∇‖u = ∇‖v in Z ′.

(ii) Suppose p is infinite and p♥ ∈ I(X, DB∗). Then u ∈ Xp+1(R1+n
+ ).

The proof, which we do not provide here, requires a series of ad hoc arguments
(much like the proof of Theorem 6.2.12) that exploit the semigroup representation
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Figure 7.8: Exponents p for which (RB)p
A is compatibly well-posed (the dark

shaded region); this includes no exponents with θ(p) = 0 or θ(p) = −1. The
light shaded region is from Figure 7.6.
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of the conormal gradient ∇Au provided by Theorems 7.3.1 and 7.3.2. Full details,
which have been communicated to us by Pascal Auscher, will be provided in a
future version of this article.

7.4.4 Layer potentials

We conclude the article by briefly indicating the relation between the first-order
approach and the method of layer potentials. Further information on this link is
available in [79] and [16, §12.3].

Suppose, for the moment, that A and A∗ both satisfy the De Giorgi–Nash–
Moser condition (7.51) of some exponent. Then for all (t, x) ∈ R1+n there exists a
fundamental solution Γ(t,x) for LA∗ in R1+n with pole at (t, x).17 The fundamental
solution Γ(t,x) is a Cm-valued function on R1+n

+ satisfying

divA∗∇Γ(t,x) = δ(t,x)1 in R1+n

in the usual weak sense, where δ(t,x) is the Dirac mass at (t, x) and 1 = (1, . . . , 1) ∈
Cm.

17Fundamental solutions were constructed in dimension n+ 1 ≥ 3 by Hofmann and Kim [47],
and in dimension n+ 1 = 2 by Rosén [79].
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For a (reasonable) function h : Rn → Cm and for (t, x) ∈ R1+n
+ , define the

double layer potential

Dth(x)i :=
ˆ
Rn

(
∂νA∗Γ(t,x)(0, y)i, h(y)

)
dy (i = 1, . . . ,m).

and the single layer potential

Sth(x)i :=
ˆ
Rn

(Γ(t,x)(0, y)i, h(y)) dy. (i = 1, . . . ,m).

One can solve Dirichlet problems for LA in R1+n
+ with boundary data ϕ by solving

the double layer equation
lim
t↘0
Dth = ϕ,

and likewise one can solve Neumann problems for LA in R1+n
+ with boundary data

ϕ by solving the single layer equation

lim
t↘0

∂νASth = ϕ.

The corresponding solutions u are then given by u(t, x) = Dth(x) and u(t, x) =
Sth(x) respectively.

It was shown by Rosén [79] that these layer potential operators fall within the
scope of the first-order framework. Keeping the De Giorgi–Nash–Moser assump-
tion on A and A∗, and writing B = Â as usual, for all f ∈ L2(Rn : Cm) and t ∈ R
we have

Dtf = sgn(t)
e−|t|BDχsgn(t)(BD)

f
0


⊥

and

∇AStf = − sgn(t)
e−|t|DBχsgn(t)(DB)

f
0


⊥

,

where the vectors
f

0

 are in L2(Rn : Cm(1+n)), written with respect to the

transversal/tangential splitting. In terms of Cauchy operators, on R1+n
± we can

write

Df = ±
C±BD

f
0


⊥

, ∇ASf = ∓
C±DB

f
0


⊥

. (7.52)

The right hand sides of these expressions are defined for all coefficients A, whether
or not the De Giorgi–Nash–Moser assumptions are satisfied.
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For all exponents p ∈ I(X, DB) (and for all infinite exponents p with p♥ ∈
I(X, DB∗)) we have the estimate∣∣∣∣∣∣C+

DBf
∣∣∣∣∣∣
Xp

. ||f ||Xp
D

(f ∈ R(DB)+)

(see Theorems 6.1.25 and 6.2.12), which immediately yields

||∇ASf ||Xp . ||f ||Xp . (7.53)

This can be seen as boundedness of S from the classical smoothness space Xp into
a Sobolev-type space built on Xp. On the other hand, because of the equality
∇‖g⊥ = −(Dg)‖ (for any g : Rn → Cm(1+n)) and similarity of functional calculus,
we can write

∇‖Df = −
C+

DBD

f
0


‖

=
C+

DB

 0
∇‖f


‖

,

which implies (for all f with ∇‖f ∈ L2)

∣∣∣∣∣∣∇‖Df ∣∣∣∣∣∣
Xp

.

∣∣∣∣∣∣
∣∣∣∣∣∣C+

DB

 0
∇‖f

∣∣∣∣∣∣
∣∣∣∣∣∣
Xp

.
∣∣∣∣∣∣∇‖f ∣∣∣∣∣∣Xp

' ||f ||Xp+1 ,

and similarly

||∂tDf ||Xp .

∣∣∣∣∣∣
∣∣∣∣∣∣BDC+

BD

f
0

∣∣∣∣∣∣
∣∣∣∣∣∣
Xp

.

∣∣∣∣∣∣
∣∣∣∣∣∣C+

DBD

f
0

∣∣∣∣∣∣
∣∣∣∣∣∣
Xp

. ||f ||Xp+1 ,

so that
||∇Df ||Xp . ||f ||Xp+1 . (7.54)

Bounds for layer potentials on the lower half-space corresponding to (7.53) and
(7.54) can also be derived. Compare these results with those of Barton and May-
boroda [21, Theorem 3.1]. Various other mapping properties of layer potentials
follow from the identifications (7.52) and the mapping properties of functional
calculus on the spaces Xp

DB, for example the uniform bounds

sup
t6=0
||∇AStf ||Xp + ||Stf ||Xp+1 . ||f ||Xp (7.55)
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(St can be defined via Cauchy operators as in [16, §12.3]) and

sup
t6=0
||∇ADtf ||Xp + ||Dtf ||Xp+1 . ||f ||Xp+1 . (7.56)

We also obtain limits for these operators as t→ 0± (in Xp or Xp+1 accordingly,
and in the strong or the weak-star topology depending on whether p is finite). In
particular we can also recover the jump relations with this formalism. We refer
the reader to Auscher and Stahlhut [16, §12.3] for further details.

For p as above, Rosén’s identification of the layer potentials in terms of Cauchy
operators and the boundedness results above imply that the solutions to boundary
value problems that we construct via Cauchy operators coincide with solutions
constructed by the method of layer potentials. It is possible that this fails outside
this range of p.
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This paper is already too long, so details will be left as a challenge to
the reader.

-Alan McIntosh, Operators which have an H∞ functional calculus [70]
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